InterBase
Programmer’s Reference

Disclaimer

Borland International, Inc. (henceforth, Borland) reserves the right to make changes
in specifications and other information contained in this publication without prior
notice. The reader should, in all cases, consult Borland to determine whether or not any
such changes have been made.

The terms and conditions governing the licensing of InterBase software consist solely
of those set forth in the written contracts between Borland and its customers. No
representation or other affirmation of fact contained in this publication including, but
"not limited to, statements regarding capacity, response-time performance, suitability
for use, or performance of products described herein shall be deemed to be a warranty
by Borland for any purpose, or give rise to any liability by Borland whatsoever.

In no event shall Borland be liable for any incidental, indirect, special, or consequential
damages whatsoever (including but not limited to lost profits) arising out of or relating
to this publication or the information contained in it, even if Borland has been advised,
knew, or should have known of the possibility of such damages.

The software programs described in this document are confidential information and
proprietary products of Borland.

Restricted Rights Legend. Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subdivision (b) (3) (ii) of the Rights in Technical
Data and Computer Software clause at 52.227-7013.

© Copyright 1993 by Borland International, Inc. All Rights Reserved. InterBase, GDML,
and Pictor are trademarks of Borland International, Inc. All other trademarks are the
property of their respective owners.

Corporate Headquarters: Borland International Inc., 100 Borland Way, P. O. Box
660001, Scotts Valley, CA 95067-0001, (408) 438-5300. Offices in: Australia, Belgium,
Canada, Denmark, France, Germany, Hong Kong, Italy, Japan, Korea, Latin America,
Malaysia, Netherlands, New Zealand, Singapore, Spain, Sweden, Taiwan, and United
Kingdom.

Software Version: V3.0

Current Printing: October 1993
Documentation Version: v3.0.1

Reprint note

This documentation is a reprint of InterBase V3.0 documentation. It contains most of
the information from InterBase Previous Versions Documentation Corrections and In-
terBase Version 3.2 Documentation Corrections and a new index. For information on
features added since InterBase Version V3.0, consult the appropriate release notes.

Table Of Contents

Preface

Who Should Read this Book i, ix
Using this Book b
Text Conventions. i xi
Syntax Conventions.t xii
InterBase Documentation 0. xiii
Introduction

OVervIeW. 1-1
Reserved Words

OVerview. 2-1
Preprocessor Punctuation and Symbols 2-2
Preprocessor Words oo 2-3
GDML Expressions

OVerVIeW. . .ot 3-1
Boolean Expressions 3-2
Record Selection Expression i 3-11
Value EXpression 3-18

GDML Statements, Commands, Declarations and Clauses

OVEIVIEW. . o et 4-1
Based _On 4-3
Cancel_Blob 4-4
Case_MenuU. ... 4-6
Close_Blob 4-9
Commit. 4-11

Vi

Create Blobt e 4-15

DataADASE . - - .ttt e 4-18
|3 T5] o) -2 4-23
Brase. . o oo e e 4-27
Event Init.o e 4-29
Event_ Wait. . .. oottt e 4-33
FetCh . oo 4-36
FIniSh . .o s 4-39
O .t e 441
For Blob ... e e 4-46
For Form ..o e 4-49
For THem . . oot 4-52
X0 A =) + L5 T P 4-54
Get_Segmento\ttt e 4-57
MO . . o et e 4-59
ON_ B TTOT. . o ot 4-61
Open_Blob 4-67
Prepare 4-69
PUt T M. . oot e 4-71
Put_Segmentooiuiii 4-74
Ready .. .ot 4-77
Release Requests.o v ittt e i 4-81
Request Options.cvt it 4-84
RoIIbAack . ..ottt e 4-88
V. v vt et e e 4-90
Start_ Streamo e 4-92
Start,_ Transactionottt e e 4-95
70 '« =S 4-99
Store Blob . . .o oo s 4-103
Transaction Handle e 4-105
SQL Expressions

OV VIEW . « « oottt e et et et e e e e e e 5-1

Predicate. o 5-2

Scalar 5-7
Select. . ..ot 5-13
SQL Statements and Commands
OVerview. 6-1
Alter Table 6-2
Close . .. 6-4
Commit. 6-6
Create Database. 6-10
Create Index. i 6-12
Create Table.t 6-14
Create View 6-17
Declare Cursor.ot 6-19
Declare Statement 6-23
Declare Table 6-24
Delete 6-28
Describe 6-31
Drop Database i 6-33
DropIndexo 6-34
DropTable 6-35
Drop View.o 6-36
Execute. 6-37
Execute Immediate 6-39
Fetch. ... 6-41
Grant 6-46
Insert 6-49
Open . . 6-54
Prepare. 6-57
Revoke. . ..o 6-59
Rollback 6-61
Select . ..o 6-63
Update 6-67

vii

viii

WHRENEVET . . o v ot e e e e e e e e e e e e e e e e e e 6-70

Reporting and Handling Errors

L= i = P A-1
Reporting Errors to Programs. oo A-2
Major Codeso ittt A4
Minor Codesottt e A-19
Preserving SQL Program Portability A-20
SQLCODE Correspondence.vuuuineenianneanen.n A-21
Dynamic SQL Error Codes i A-25

Preface

This book describes the syntax for each InterBase GDML and SQL expressions, state-
ments, declarations, and commands.

Who Should Read this Book

You should read the Programmer’s Reference guide if you are an applications program-
mer who wants to program GDML or SQL commands against an InterBase database.
You should also read this guide if you are an end-user who wants to use interactive
GDML or SQL to query an InterBase database using qli. This book is a companion to
the Programmer’s Guide and assumes you have read that book, or you are experienced
with InterBase.

Using this Book

Using this Book

This book contains the following chapters:

Chapter 1
Chapter 2

Chapter 3
Chapter 4

Chapter 5
Chapter 6

Appendix A

Introduces the book.

Lists the punctuation and symbols the Interbase pre-
processor gpre recognizes. Also lists reserved words for
GDML and SQL.

Contains entries for each GDML expression.

Contains entries for each GDML statement, declara-
tion, command and clause.

Contains entries for each InterBase SQL expression.

Contains entries for each InterBase supported SQL
statement and command.

Discusses error handling in GDML, SQL and DSQL
programs.

Text Conventions

Text Conventions

This book uses the following text conventions:

boldface

italics

fixed width font

UPPER CASE

Indicates a command, option, statement, or utility.
For example:

e Use the commit command to save your changes.
¢ Use the sort option to specify record return order.

¢ The case_menu statement displays a menu in the
forms window.

o Use gdef to extract a data definition.

Used for chapter and manuals titles; to identify file-
names and pathnames. Also used for emphasis, or to
introduce new terms. For example:

® See the introduction to SQL in the Programmer’s
Guide

® (/usr/interbase/lock_header)

* Subscripts in RSE references must be closed by
parentheses and separated by commas.

* C permits only zero-based array subscript refer-
ences.

Indicates user-supplied values and example code:
® Srun sysSsystem:iscinstall
¢ add field population_1950 long

Indicates relation names and field names:

* Secure the RDB$SECURITY_CLASSES system
relation.

* Define a missing value of X for the LATITUDE_-
COMPASS field.

Xi

Syntax Conventions

Syntax Conventions

This book uses the following syntax conventions:

{braces}

[brackets]

fixed width font

commalist

italics

Xii

Indicate an alternative item:

e option::= {vertical | horizontal | transparent}

Indicate an optional item:

* dbfield-expression[not]missing

Indicates user-supplied values and example code:
* $run sys$system:iscinstall

* add field population_1950 long

Indicates that preceding word can be repeated to create
an expression of one or more words, with each word
pair separated by one comma and one or more spaces.

For example,
field_def-commalist
resolves to:
field_def [, field_def[,field_def]...]
Indicates syntax variable:

®* create_blob blob-variable in
dbfield-expression

A vertical bar separates items in a list of choices.

A down arrow indicates that parts of a program or
statement have been omitted.

InterBase Documentation

InterBase Documentation

The InterBase Version 3.0 documentation set contains the following books:

Getting Started with InterBase (INT0032WW2179A) provides an overview of InterBase
components and interfaces.

Database Operations (INT0032WW2178D) describes how to use InterBase utilities to
maintain databases.

Data Definition Guide (INT0032WW2178F) describes how to create and modify
InterBase databases.

DDL Reference (INT0032WW2178E) describes the function and syntax for each of the
data definition language clauses and statements. It also lists the standard error
messages for gdef.

DSQL Programmer’s Guide (INT0032WW2179C) describes how to program with
DSQL, a capability for accepting or generating SQL statements at runtime.

Forms Guide (INT0032WW2178A) describes how to create forms using the InterBase
forms editor, fred, and how to use forms in qli and GDML applications.

Programmer’s Guide (INT0032WW2178I) describes how to program with GDML, a
relational data manipulation language, and SQL, an industry standard language.

Programmer’s Reference (INT0032WW2178H) describes the function and syntax for
each of the GDML and InterBase supported SQL clauses and statements. It also
lists the standard error messages for gpre.

Qli Guide (INT0032WW2178C) describes the use of qli, the InterBase query language
interpreter that allows you to read to and write from the database using interactive
GDML or SQL statements.

Qi Reference (INT0032WW2178B) describes the function and syntax for each of the
data definition, GDML, and SQL clauses and statements that you can use in qli.

Sample Programs (INT0032WW2178G) contains sample programs that show the use
of InterBase features.

Master Index (INT0032WW2179B) contains index entries for the entire InterBase Ver-
sion 3.0 documentation set.

In addition, platform-specific installation instructions are available for all supported
platforms.

xiii

Chapter 1
Introduction

The Programmer’s Reference has information about all InterBase GDML and SQL
expressions, statements, clauses and declarations.

Overview

Each expression and statement has the following sections:
* Function, which describes what the expression or statement does

* Syntax, which provides a complete diagram of the expression or statement and its
options

* Options, which describes each option of the expression or statement
* Example, which shows how to use the expression or statement in a program
* Troubleshooting, which list error messages and suggests corrective actions

* See Also, which refers you to related expressions or statements, or other sources
of related information.

Introduction 1-1

Overview

In addition, some statements and expressions contain a section describing usage. The
Usage section is an in depth discussion of how or why to use a GDML or SQL statement
or expression.

1-2 Introduction

Chapter 2
Reserved Words

This chapter lists the punctuation and symbols that the Interbase preprocessor gpre
recognizes. It also lists reserved words for GDML and SQL.

Overview

Reserved words are words defined in GDML or SQL for special purposes. They cannot
be used as user-declared identifiers.

Reserved Words 2-1

Preprocessor Punctuation and Symbols

Preprocessor Punctuation and Symbols

Gpre recognizes the following punctuation and symbols:

& -> [
&& ++ -
> >= Ne
< <= N>
<> I= N=
) {}
(1 0 ;
/ * \
+

2-2 Reserved Words

Preprocessor Words

Gpre recognizes the following reserved words:

ADD

ALTER

ANY

AT

BASED
BETWEEN
BUFFERCOUNT
CHAR
COMMENT
COMPILETIME
CONCURRENCY
CONTAINING
CREATE
CURRENT
DATE
DECLARE
DESCENDING
DOUBLE

END
END-EXEC
END_MODIFY
EQ

EXCLUSIVE
EXISTS

FETCH
FINISH_DATABASE
FOR

FROM
GET_SEGMENT
GROUP

IN

INSERT

IS

LEVEL

LONG
MATCHES

ALL

AND

ASC
AVERAGE
BASED_ON
BT
BUFFERSIZE
CLOSE
COMMIT
COMPILE_TIME
CONNECT
CONTINUE
CREATE_BLOB
CURSOR
DBA
DELETE
DESCRIBE
DROP
END_ERROR
END_FETCH
END_STORE
ERASE
EXEC
EXTERN
FILENAME
FIRST
FORWARD
FUNCTION
GO

GT
INCLUDE
INTEGER

LE

LIKE

LT
MATCHING

Reserved Words

Preprocessor Words

ALLOCATION
AS
ASCENDING
AVG

BEGIN

BY

CASE
CLOSE_BLOB
COMMIT_TRANSACTION
CANCEL_BLOB
CONSISTENCY
COUNT
CROSS
DATABASE
DECIMAL
DESC
DISTINCT
ELSE
END_EXEC
END_FOR
END_STREAM
ERROR
EXECUTE
EXTRACT
FINISH
FLOAT
FOUND

GE

GRANT
HAVING
INDEX

INTO
LENGTH
LOCK

MAIN

MAX

2-3

Preprocessor Words

MIN

NE

NOT

ON
OPEN_BLOB
ORDER
PATHNAME
PROC

PUBLIC

READ

READY
RELEASE
REQUEST_HANDLE
REVOKE

RUN
SCHEDULE
SELECT
SHORT

SQL
SQLWARNING
STARTING
STATIC
STRING

SUM
TABLESPACE
TRANSACTION_HANDLE
UPDATE

MISSING
NO_WAIT

NULL
ON_ERROR
OPTION

OVER

PREPARE
PROCEDURE
PUT_SEGMENT
READ_ONLY
READY_DATABASE
RELEASE_REQUESTS
RESERVING
ROLLBACK
RUNTIME
SECTION

SET

SMALLINT
SQLCODE
START_STREAM
STARTING_WITH
STOGROUP

SUB

SYNONYM

TO

UNION

Reserved Words

MODIFY

NOWAIT

OF

OPEN (add option to list)
OR

PAGESIZE
PREPARE_TRANSACTION
PROTECTED
RDB$DB_KEY
READ_WRITE
REDUCED

REM

RESOURCE
ROLLBACK_TRANSACTION
SCALE

SEGMENT

SHARED

SORTED

SQLERROR

START _TRANSACTION
STATEMENT

STORE

SUBROUTINE

TABLE

TOTAL

UNIQUE

Chapter 3
GDML Expressions

This chapter contains entries for GDML expressions.

Overview
GDML supports the following expressions:

* Boolean expression, which evaluates to true, false, or missing

* Record selection expression, which specifies the search and delivery conditions for
record retrieval

* Value expression, a symbol or string of symbols from which InterBase calculates
a value

GDML Expressions 3-1

Boolean Expressions

Boolean Expressions

Function

Syntax

3-2

A Boolean expression evaluates to true, false, or missing. It

describes the characteristics of a single value expression (for
example, a missing value) or the relationship between two value
expressions (for example, x is greater than y).

The order of precedence for evaluating compound Boolean
expressions is not, and, and or.

Boolean-expression ::=
{[not]conditional -expression]
conditional-expression and
conditional-expression
| conditional-expression|
conditional-expression or
conditional-expression

conditional-expression ::=

{any-condition| between-conditionl|
comparison-condition|containing-condition
matching-condition|matching using condition]|
missing-condition|not-conditionl|
starting-condition|unique-condition}

The following sections describe the ten conditions of the Boolean
expression:

e Any condition

¢ Between condition

e Comparison condition

¢ Containing condition

* Matching condition

* Matching using condition
e Missing condition

* Not condition

e Starting condition

e Unique condition

GDML Expressions

Boolean Expressions

Any Condition

Function The any condition tests for the existence of at least one qualify-
ing record in a relation or relations. This expression is true if the
record stream specified by RSE includes at least one record. If
you add not, the expression is true if there are
no records in the record stream.

You might want to use any instead of joining records if all you
want to do is establish a record exists. As soon as InterBase finds
one record that meets the search criteria, it stops, whereas a join
would continue until it found all qualifying records

Syntax [not] any rse

Example The following statement prints the name of any state for which
there are cities stored:

for s in states with any c¢ in cities
with c.state = s.state

printf ("%s\n", s.state_name);
end_for;
Between Condition
Function The between condition tests whether a value expression occurs

between two other value expressions. This test is inclusive of the
boundary values.

Syntax value-expression-1[not]between
value-expression-2 and value-expression-3

Options value-expression-1
Specifies an expression for which to test.

value-expression-2
value-expression-3
Sspecify the lower and upper inclusive boundaries.

GDML Expressions 3-3

Boolean Expressions

Example The following statement looks for cities with populations
between 100,000 and 250,000:

for ¢ in cities with c.population
between 100000 and 250000
printf ("%$s\t%s\t%d\n", c.city, c.state,
c.population) ;
end_for;

Comparison Condition

Function The comparison condition describes the characteristics of a sin-
gle expression.

Syntax value-expression-1 relational-operator
value-expression-2

Options relational-operation
Any of the operators in the following table.

Table 3-1. Relational Operators

Operator Relationship
eq or = or == Equal
ne or <> orl= Not equal
gt or > Greater than
ge or >= Greater than or equal
It or < Less than
le or <= Less than or equal
Example The following statement looks for cities with populations less

than 100,000:

for ¢ in cities with c.population < 100000
printf ("%s\t%s\t%d\n", c.city, c.state,
c.population) ;
end_for;

3-4 GDML Expressions

Boolean Expressions

Containing Condition

Function

Syntax

Options

Examples

The containing condition tests for the presence of string (case-
insensitive) anywhere in value-expression. It evaluates to true if
string is contained in value-expression. If the value of value-
expression is missing, the result is missing.

The containing condition also works with blobs, searching every
segment in a blob for an occurrence of the quoted string.

value-expression-1 [not] containing
value-expression-2

value-expression-1
Specifies an expression for which the substring search occurs.

value-expression-2
Specifies an expression for which the substring search occurs.

The following statement looks for cities with the substring “ville”
somewhere in their name:

for ¢ in cities with c.city containing 'ville’
printf ("%$s\t%s\n", c.city, c.state);
end_for;

The following fragment looks for a COMMENTS entry in the
CROSS_COUNTRY relation that contains the substring “var-
ied”:

for ¢ in cross_country with c¢.comments
containing ‘varied’
printf ("%$s\t%s\t%s\n\n", c.area_name,
c.city, c.state);
for blob in c.comments
blob.segment [blob.length]=0;
printf("%s", blob.segment) ;
end_for;
printf ("\n");
end_for;

GDML Expressions 3-5

Boolean Expressions

Matching Condition

Function

Syntax

Options

Examples

The matching condition tests for the presence of wildcarded-
string, a string containing the wildcard characters * and ?. The
asterisk matches an unspecified run of characters, while the
question mark matches a single character. This Boolean test is
case insensitive.

value-expression-1 [not] matching
value-expression-2

value-expression-1
Specifies an expression for which the wildcard substring search
occurs.

value-expression-2
Specifies an expression for which the substring search occurs.

The following example looks for states with the state abbrevia-
tion equal to “N” followed by exactly one character:

for ¢ in cities with c.city matching 'N?’
printf ("%s\t%s\n", c.city, c.state);
end_for;

The following example looks for cities that have “ton” some-
where in their names:

for ¢ in cities with c.city matching ’*ton*’
printf ("%$s\t%s\n", c.city, c.state);
end_for;

GDML Expressions

Boolean Expressions

Matching Using Condition

Function

Syntax

Options

The matching using condition lets you define your own wild-
card search characters.

matching value-expression using ’‘control-string’

control-string ::= [prequalifier][definition-
commalist] [postqualifier]

prequalifier ::= [-S(|+S(]

definition ::= wildcard =definition-character
[definition-character...]

postqualifier ::= [)]

value-expression
Specifies the expression for which the substring search occurs.

prequalifier

The prequalifier string -S(disables case sensitivity of the
value-expression in the matching clause. The prequalifier
string +S(enables case sensitivity of the value-expression in
the matching clause.

definition

Specifies the punctuation or symbol character that you want to
define and sets it equal to one or more of the characters in the
following table:

Definition Character | Operation

? Matches any single character.

1 Defines a class of character.

* Modifies previous definition or class: indicates zero or
more occurrences.

@ Treats the next character as literal.

Excludes the following character or class of characters.

A class of characters can be a list or range of characters that
you specify inside the square brackets. For example, the range

GDML Expressions 3-7

Boolean Expressions

Example

[0-9] or the list [0123456789] represents any numeral. If you
define a class with &=[0-9A-Za-z], the ampersand represents
all alphanumeric characters. You can use the tilde only as the
first character in a class definition. The class definition of [~0-
9] means any non-numerals.

postqualifer
The postqualifier) is optional.

The following example searches for cities that have “ton” some-
g p

where in their names. The matching using clause defines “+” as

zero or more occurrences of any single character:

for ¢ in cities with c.city matching ’+ton+’ using
‘+=2*' print city

Missing Condition

Function

The missing condition tests for the absence of a value in dbfield-
expression. A dbfield-expression references a database field. It is
true if the value of dbfield-expression is missing.

Unless you specify otherwise in the field’s definition, blanks are
returned for numbers, characters, and dates, and nothing is
returned for blobs.

Table 3-2.

Syntax dbfield-expression [not] missing

Example

3-8

The following statement looks for states that have a missing
value for the CAPITAL field:

for s in states with s.capital missing
printf ("%s\n", s.state_name);
end_for;

GDML Expressions

Not Condition

Function

Boolean Expressions

The not condition negates a Boolean expression. The syntax
diagrams for each of the Boolean expressions includes the correct
position for the not.

Syntax

not value-expression

Example

The following statement looks for cities with populations not
between 100,000 and 250,000:

for ¢ in cities with c.population not between
100000 and 250000
printf ("%s\t%s\t%d\n", c.city, c.state,
c.population) ;
end_for;

Starting Condition

Function

The starting condition tests for the presence of string (case-sen-
sitive) at the beginning of value-expression. It evaluates to true if
the first characters of value-expression match string. The search
is case-sensitive.

Syntax

value-expression-1 [not]starting with
value-expression-2

Options

Example

value-expression-1
Specifies an expression at the start of which the substring
search is to occur.

value-expression-2
Specifies an expression for which the substring search occurs.

The following statement looks for cities that start with the string
“New”:

for c in cities with c.city starting with ’‘New’
printf ("%$s\t%s\n", c.city, c.state);
end_for;

GDML Expressions 3-9

Boolean Expressions

Unique Condition

Function

Syntax

Example

Troubleshooting

See Also

3-10

The unique condition tests for the existence of exactly one qual-
ifying record. This expression is true if the record stream speci-
fied by RSE consists of only one record. If you add not, the
condition is true if there is more than one record in the record
stream or if the record stream is empty.

[not]unique rse

The following query prints the names of states that have only one
ski area:

for s in states with unique ski in ski_areas with
ski.state = s.state
printf ("%s\n", s.state_name);
end_for;

See the Appendix for a discussion of errors and error handling.

See the chapter on defining fields in the Data Definition Guide
for more information about defining alternate missing values.

See the entries in this chapter for:

® Value expression

¢ Record selection expression

GDML Expressions

Record Selection Expression

Record Selection Expression

Function

Syntax

Troubleshooting

See Also

The RSE (record selection expression) clause specifies the search
and delivery conditions for record retrieval.

[first-clause] record-source [with-clause]
[reduced-clause] [sorted-clause]

record-source ::= {relation-clause | cross
source}
relation-clause ::= [context-variable in]

relation-name

cross-source ::= relation-clause cross
record-source

The following sections describe the clauses of the record selection
expression:

* First clause

* Relation clause

* Cross clause

¢ With clause

¢ Reduced clause

* Sorted clause

See the discussion of errors and error handling in the chapter on
getting started with GDML in the Programmer’s Guide. See also
the Appendix for a list of errors.

See the entries in this chapter for:

* Boolean-expression

* Value expression

GDML Expressions 3-11

Record Selection Expression

First Clause

Function

Syntax

Options

Example

The first-clause limits the records in a stream to the number you
specify with an integer. The format of the first-clause follows.

first integer

integer
Specifies the number of records to select. Any fractional portion
of the integer is truncated. Unless you sort the record stream
when you use the first-clause, integer random records are
returned.

The following query uses a first-clause, a relation-clause, and a
sorted-clause to display the two youngest states:

for first 2 s in states sorted by descending
s.statehood
printf ("%$s was admitted to the Union on %s\n",
s.state_name, s.statehood);
end_for;

Relation Clause

Function

Syntax

Options

The relation-clause identifies the target relation. The format of
the relation-clause follows.

context-variable in [database-handle]
relation-name

context-variable
The context variable is used for name recognition and is asso-
ciated with a relation. A context variable can contain up to 31
alphanumeric characters, dollar signs ($), and underscores (_).
However, it must start with an alphabetic character.

Except for C programs, gpre is not sensitive to the case of the
context variable. For example, it treats “B” and “b” as the same
character. For C programs, you can control case sensitivity of
context variables with the either_case option, when you pre-
process your program.

GDML Expressions

Record Selection Expression

database-handle
The optional database-handle identifies the database for mul-
tiple database access.

relation-name
Identifies the relation to use in the relation-clause.

Example The following query declares a context variable for the SKI_AR-
EAS relation:

for ski in ski_areas reduced to ski.state
printf ("%s\n", ski.state);
end_for

Cross Clause (Join)

Function The cross-clause performs a join operation. It joins records from
two or more different relations in the same database. The rela-
tionship can be:

* An equijoin, which is based on the equality of common fields
* A non-equijoin, which is based on inqualities

* A cross product, where no relationship exists

Unlike most other clauses of the record selection expression, the
cross-clause can be repeated to include as many relations as are

necessary.
Syntax cross relation-clause [over field-name-commalist]
Options relation-clause

Identifies the target relation.

over field-name-commalist
Equates a field in one relation with a field in another. The field-
name must be exactly the same in both relations. Otherwise,
you must use the with-clause, even if both fields are based on
the same field.

GDML Expressions 3-13

Record Selection Expression

Examples

3-14

The following query uses two relation clauses and a cross clause
to list a SKI AREA, CITY, and STATE in which the ski area is
located:

for s in states cross ski in ski_areas over state
printf ("%$s\t%s\t%s\n", ski.name, ski.city,
s.state_name) ;
end_for;

The following query does the same thing as the preceding query,
but uses an explicitly qualified join condition in place of the cross
shortcut:

for s in states cross ski in ski_areas with
s.state = ski.state
printf ("%s\t%s\t%s\n", ski.name, ski.city,
s.state_name) ;
end_for;

The following statement displays the names of cities that are
larger than the capitals of their states:

for s in states cross ¢ in cities over state cross
cs in cities with cs.state = c.state and
cs.city = s.capital and
cs.population < c.population
sorted by s.state, c.city
printf ("%s, %s is larger than %s\n", c.city,

s.state_name,s.capital);
end_for;

The following statement displays the names of states in which
the capital is not the largest city:

for s in states cross ¢ in cities over state cross
cs in cities with cs.state = c.state and
cs.city = s.capital and
cs.population < c.population
sorted by s.state
reduced to s.state, s.capital
printf ("%$s contains cities larger than %s\n",

s.state_name,s.capital);

end_for;

commit ;

finish;

GDML Expressions

Record Selection Expression

With Clause (Select)

Function

Syntax

Options

Example

The with-clause specifies a search condition or combination of
search conditions.

When you specify a search condition, InterBase evaluates the
condition for each record that might possibly qualify. InterBase
compares the value you supplied with the value in the database
field you specified. If the two values are in the relationship indi-
cated by the operator you specified (for example, “equals”), the
search condition is true and that record becomes part of the
record stream.

with Boolean-expression

Boolean-expression
Specifies the predicate used in selecting records.

The following query uses a with-clause to limit the display cities
in Texas for which the value of the POPULATION field is not
missing:

for ¢ in cities with c.state = 'TX’ and
c.population not missing
printf ("%s\t%d\t%d\n", c.city, c.population,
c.altitude) ;
end_for;

Reduced Clause (Project)

Function

The reduced-clause performs a project operation, retrieving only
the unique values for a field.

When you ask for a record stream projected on a field, InterBase
considers a list of fields and eliminates records that do not have
a unique combination of values for the listed fields. When you
reduce a record stream, you can only reference fields that were
mentioned in the reduced clause.

GDML Expressions 3-15

Record Selection Expression

Syntax

reduced [to] dbfield-expression-commalist
dbfield-expression ::= [context-variable.]
field-name

Options

Example

Sorted Clause

Function

dbfield-expression
Specifies the field on which you want to project the result.

context-variable.field-name
Qualifies the database field for multi-relation operations.

The following query uses a reduced-clause to list the states in
which there are ski areas:

for ski in ski_areas reduced to ski.state
printf ("%s\n", ski.state);
end_for;

The sorted-clause orders the output, returning the record stream
sorted by the values of one or more sort keys.

Syntax

sorted [by] sort-key-commalist

sort-key ::= [ascending|descending]
[anycase | exactcase] db-field-expression

db-field-expression ::= context-variable.field-
name

Options

sort-key

Specifies the field on which you want to sort. You can sort a
record stream alphabetically, numerically, by date, and by any
combination of these. The sorted-clause lets you have as many
sort keys as you want. The greater the number of sort keys, the
longer it takes for InterBase to execute the query.

ascending | descending

For each sort key, you can specify whether the sorting order of
the sort key is ascending or descending. If you have more
than one sort key, the sorting order you specify cascades down
the list; that is, if you do not specify whether a particular sort
key in the list is ascending or descending, gpre assumes

GDML Expressions

Examples

Troubleshooting

See Also

Record Selection Expression

that you want the order specified for the most recent key.
Therefore, if you list several sort keys, but only include the
keyword descending for the first key, InterBase sorts all keys
in descending order. The default order is ascending.

anycase | exactcase

For each sort key, you can specify whether the sorting order of
the sort key is anycase or exactcase. If you have more than
one sort key, the case you specify cascades down the list; that
is, if you do not specify whether a particular sort key in the list
is anycase or exactcase, gpre assumes you want the case
specified for the most recent key. The default case is exact-
case.

context-variable.field-name
Qualifies the database field for multi-relation operations.

The following query uses a first-clause, a relation-clause, a
sorted-clause and the descending keyword to display the two
youngest states:

for first 2 s in states sorted by descending
s.statehood
printf ("%s was admitted to the Union on %s\n",
s.state_name, s.statehood);
end_for;

The following query uses a sorted-clause and the exactcase key-
word to display a list of names. If you had an employee with a last
name input as CASEY and another with a last name input as
Casey, CASEY would appear first:

for employees sorted by exactcase lname
print fname, lname

See the Appendix for a discussion of errors and error handling.
See the entries in this chapter for:

* Boolean expression

* Value expression

GDML Expressions 3-17

Value Expression

Value Expression

Function

Syntax

Troubleshooting

See Also

The value-expression is a symbol or string of symbols from which
InterBase calculates a value. InterBase uses the result of the
expression when executing the statement in which the expres-
sion appears.

value-expression::= {arithmetic-expression |
dbfield-expression | numeric-literal-expression

| quoted-string-expression | username-expression
| (value-expression) | - value-expression | host-
language-variable }

The following sections describe the expressions of the value
expression:

* Arithemetic expression

¢ Database field expression

¢ Numeric literal expression

* Quoted string expression

¢ Username expression

See the Appendix for a listing of errors and error handling.
See the entries in this chapter for:

* Boolean expression

* Record selection expression

Arithmetic Expression

Function

Syntax

The arithmetic-expression combines value expressions and arith-
metic operators. The format of the arithmetic-expression follows.

value-expression-1{+|-1*|/|}value-expression-2

You can add (+), subtract (-), multiply (*), or divide (/) value
expressions in record selection expressions. Arithmetic operators

GDML Expressions

Example

Value Expression

are evaluated in the normal order (addition, subtraction, multi-

plication, division). Use parentheses to change the order of eval-
uation.

The following statement uses a database field expression to
display the city and an arithmetic expression to calculate and
display the altitude in meters:

for ¢ in cities with c.altitude * 0.3048 > 500
printf ("%s\n" c.city)
end_for;

Database Field Expression

Function

Syntax
Options

The dbfield-expression references database fields. This
expression can occur in several clauses of record selection
expressions and Boolean expressions.

context-variable. field-name(.null |.datatype]

context-variable. field-name
Qualifies the database field for multi-relation operations.
Declare the context variable for a relation in the relation clause
of the record selection expression.

.null
Allows access to the null flag for the field. If you reference the
null flag in a store or modify statement, you must set it explic-
itly. If the null flag remains true (that is, non-zero) the field is
stored as missing, even if you supply a value.

.datatype

. Lets you “cast” a database field with a datatype other than that
with which it is stored. Gpre automatically takes care of
datatype conversion, but you can “convert” a field for the dura-
tion of a request to the datatype of your choice.

GDML Expressions 3-19

Value Expression

Example

The following statement uses a database field expression to dis-
play the city and an arithmetic expression to calculate and dis-
play the altitude in meters:

for ¢ 1n cities with c.altitude * 0.3048 > 500
printf ("%s\n" c.city)
end_for;

Numeric Literal Expression

Function
Syntax

Options

Example

The numeric-literal-expression represents a decimal number.

numeric-stringl.numeric-string]

numeric-string
A string of digits with an optional decimal point.

The following statement uses a database field expression to
display the city, an arithmetic expression to calculate and display
the altitude in meters, and a numeric literal expression used in
the arithmetic operation:

for ¢ in cities with c.altitude * 0.3048 > 500
printf ("%$s\n" c.city)
end_for;

Quoted String Expression

Function

Syntax

3-20

The quoted-string-expression specifies a string of ASCII charac-
ters enclosed in single () or double (") quotation marks,
depending on host language requirements.

“string”

GDML Expressions

Options

Example

Value Expression

string
Any of the ASCII characters in the following table:

Characters Description

A—7Z Uppercase alphabetic
a—z Lowercase alphabetic
0—9 Numerals

'1@#$ %" &*()_-+=‘~[11{} | Special characters

The following statement uses database field expressions to
display the city and state, an arithmetic expression to calculate
and display the altitude in meters, a numeric literal expression
used in the arithmetic operation, and two quoted string expres-
sions to anglicize the C printf display:

for ¢ in cities cross s in states over state
printf ("%s, %s is situated at %f meters above
sea level.\n",
c.city, s.state_name, c.altitude * 0.3048);
end_for;

Username Expression

Function

Syntax

Options

Example

The username-expression is a value expression that automati-
cally picks up the username or login of the person running the
program. Combined with a trigger that automatically stores the
username of users storing or modifying records, you can keep
track of who does what to which records.

rdbSuser_name

rdb$user_name
A value expression to which is assigned the username or login.
This expression can only be used in RSEs and cannot be quali-
fied with a context variable.

The following statement picks up the username and uses an RSE
that selects records based on the value of the USER_NAME field:

GDML Expressions 3-21

Value Expression

Troubleshooting

See Also

3-22

for e in employees with

e.user_name = rdbSuser_name
printf ("%s, %s\n", e.emp_name,
e.user_name) ;
end_for;

See the list of error messages in the Appendix.
See the entries in this chapter for:

* Boolean expression

* Record selection expression

GDML Expressions

Chapter 4
GDML Statements, Commands,
Declarations and Clauses

This chapter contains entries for GDML statements, commands, declarations and
clauses.

Overview

To manipulate data in an InterBase database, you can use the following statements,
commands, declarations and clauses:

based_on declaration cancel_blob case_menu
close_blob commit create_blob
database declaration display erase
event_init event_wait fetch

finish for for blob

GDML Statements, Commands, Declarations and Clauses 4-1

for form
get_segment
open_blob
put_segment
request_options
start_stream
store blob

for_item

modify

prepare

ready

rollback
start_transaction

transaction handle

for_menu
on_error
put_item
release_requests
save

store

GDML Statements, Commands, Declarations and Clauses

Based On

Function

Syntax

Options

Examples

Troubleshooting

See Also

Based_On

The based_on declaration declares a program variable by refer-
encing a database field. The preprocessor supplies the host vari-
able with all the attributes defined for the database field.

variable based_on dbhandle relation-name.field-
name

variable
Names a host language variable that inherits the characteris-
tics of a database field.

In Pascal, you cannot use the based_on clause in a parameter
list for a routine. Instead, declare a type and then declare the
formal parameter to be that type.

dbhandle
Specifies the source of the database field. The database handle
must have been declared in an earlier database statement.

relation-name. field-name
Specifies the relation and field on which to base the host
variable.

The following example shows two based_on declarations as they
would appear in a C program:

based_on states.state_name state_name;
based_on states.capitol capitol_city;

The following example shows the based_on declaration as it
would appear in a Pascal program:

var state : based_on states.state;

See the Appendix for a discussion of error handling and a listing
of errors.

Host language documentation for information on the declaration
of variables.

GDML Statements, Commands, Declarations and Clauses 4-3

Cancel_Blob

Cancel_Blob

Function

Syntax

Options

Example

The cancel_blob statement releases internal storage used by a
discarded blob and sets the blob handle to null.

When you create a blob, InterBase temporarily stores it in the
database. If you fail to close the blob, the temporary storage
space remains allocated.

Because this statement does not produce an error if the handle is
null, it is good practice to call this routine before you open or cre-
ate a blob. This practice ensures that the InterBase cleans up
earlier blob operations. If you abort a blob operation, you should
use a cancel_blob statement before opening or creating another
blob.

cancel_blob blob-variable [on_error]

on_error ::= on_error statement...end_error

blob-variable
A temporary name used for name recognition. It is associated
with individual segments in the field and is used very much
like a context variable. You must have assigned the blob vari-
able in an earlier create_blob or open_blob statement.

on_error
Specifies the action to be performed if an error occurs during
the cancel operation.

statement
A host language or GDML statement. If you include more than
one statement, you must separate them using the host lan-
guage convention.

The following example creates a record stream, creates a blob
field, and writes segments to the blob field. It uses a
cancel_blob statement to release internal storage once process-
ing has ended:

store tour 1in tourism using
printf ("Enter state code: ");
gets (tour.state)

GDML Statements, Commands, Declarations and Clauses

Troubleshooting

See Also

Cancel_Blob

printf ("Enter zip code: ");
gets (tour.zip)
printf ("Enter city: ");
gets (tour.city)
create_blob b in tour.guidebook;
printf ("Enter new blurb one line at a time\n");
printf ("A line containing '-30-’' ends input");
gets (b.segment) ;
while (strcmp (b.segment, "-30-")
for (i=strlen(b.segment) ;i
if (b.segment[i] != *
b.segment [i+1]="\n";
b.segment [1+2]=0;
b.length = i+1;
i=0;
}
}
put_segment b;
gets (b.segment) ;

) |
>=0;1--){
) o

}
printf ("Do you swith to continue? ")
gets (answer)
if (answer[0] ==‘y’ || answer [0] == 'Y’
close_blob b
else
cancel_blob b
end_store;

See the Appendix for a discussion of error handling and a listing
of errors.

See the entries in this chapter for:

e open_blob
* create_blob

¢ on_error

GDML Statements, Commands, Declarations and Clauses 4-5

Case_Menu

Case Menu

Function

Syntax

Options

4-6

The case_menu statement displays a menu in the forms window
and executes the code associated with the user’s choice.

case_menu [(options)] title-string menu-entrees
end_menu

menu-entrees::= (menu_entree entree-stringj}...
options::= {vertical | horizontal | transparent]

title-string
A quoted string that provides the title line for the menu.

menu_entree
Establishes a line that appears in a menu and introduces a
block of code that executes if the line is chosen:

* All code between the keywords case_menu and end_-
menu must be introduced by menu_entree labels.

¢ To specify an option to continue without taking any
action, include a null statement under the menu_-
entree label.

Because the case_menu statement is like a Pascal case state-
ment, and not like a C switch statement, choosing a menu
item executes only the code between that item and the next
item or end_menu.

entree-string

A quoted string that becomes a line in a vertical menu or a se-
lection item in a horizontal menu.

vertical
Displays the menu choices in a vertical format. This display op-
tion is the default. A vertical menu overwrites the contents of
the current form with its menu choices.

GDML Statements, Commands, Declarations and Clauses

Example

Case_Menu

horizontal
Displays the menu choices in a horizontal format. A horizontal
menu, also called a “tag-line menu,” displays the menu choices
on the bottom line of the menu.

transparent
Displays the menu choices vertically, obscuring only those
parts of the form directly behind the menu.

The following example cycles through the atlas database, dis-
playing a menu for each displayed state and offering the user a
chance to update the state’s capital or exit from the iteration:

#include <stdio.h>
database db = "atlas.gdb";

#define CONTINUE 0
#define STOP 1
main()

{

intflag;

flag = CONTINUE;

for form x in show_state
for s in states sorted by s.statehood

strcpy (x.state_name, s.state_name);
x.statehood = s.statehood;
X.area = s.area;
strcpy (x.state, s.state);
strcpy (x.capital, s.capital);
display x displaying *;

case_menu (transparent) "Alter State?"
menu_entree "No Changes":
menu_entree "Change Capital":
display x accepting capital
cursor on capital waking on capital;
if (x.capital.state =
PYXIS_SOPT_USER_DATA)
modify s
strcpy (s.capital, x.capital);

GDML Statements, Commands, Declarations and Clauses 4-7

Case_Menu

Troubleshooting

See Also

4-8

end_modify;

menu_entree "Exit"

flag = STOP;
end_menu;

if (flag == STOP)
break;
end_for;
end_form;
delete_window;
finish;

}

See also the Appendix for a listing of errors and a discussion of
error handling.

See the entries in this chapter for:

e display

e for form

GDML Statements, Commands, Declarations and Clauses

Close_Blob

Close Blob

Function The close_blob statement closes an open blob field and releases
system resources associated with blob retrieval or update.

You should close the blob as soon as you finish reading or writing.
If you fail to close a blob to which you wrote data, you are not able
to make the blob permanent. Closing a blob is especially impor-
tant when you access remote databases. Because InterBase’s
remote interface buffers segment transfer between participating
nodes, it may truncate the last segment you write unless you
explicitly signal that the blob is closed.

Once you close a blob, you cannot read from or write to that blob
without re-opening it with an open_blob or for blob statement.

Syntax close_blob blob-variable [on-error]
on-error::= on_error statement... end_error
Options blob-variable

A temporary name used for name recognition. It is associated
with individual segments in the field and is used very much
like a context variable. You must have assigned the blob vari-
able in an earlier create_blob or open_blob statement.

on_error
Specifies the action to be performed if an error occurs during
the close operation.

statement
A host language or GDML statement. If you include more than
one statement, you must separate them using the host lan-
guage convention.

end_error
Terminates the on_error clause.

Example The following program creates a record stream from two rela-
tions, opens a blob field, reads segments from the blob field, and
then closes the blob field:

/* program update_guide */

GDML Statements, Commands, Declarations and Clauses 4-9

Close_Blob

#include <stdio.h>
database atlas = filename ‘atlas.gdb’;

main ()

{

ready atlas;
start_transaction;
for s in states cross t in tourism over state
sorted by s.state
printf ("%s %s\n", s.state_name, t.city);
open_blob b in t.office
get_segment b;
while ((gds_S$status [1] == 0) ||
(gds_Sstatus [1] == gds_$segment)) {
b.segment [b.length]=0;
printf ("%s", b.segment);
get_segment b;
}
printf("\n");
close_blob b;
end_for;
commit;
finish atlas;

}
Troubleshooting See the Appendix for a discussion of errors and error handling.
See Also See also the entries in this chapter for:

e open_blob

* on_error

For some guidance on the best approach to processing blobs, see
the chapter on using blobs in the Programmer’s Guide.

4-10 GDML Statements, Commands, Declarations and Clauses

Commit

Function

Syntax

Options

Examples

Commit

The commit command ends a transaction and makes the trans-
action’s changes visible to other users.

The commit commit affects all databases in the transaction,
writing to the database(s) all changes made during the transac-
tion. It flushes all modified buffers and closes any record streams
that are open.

commit [transaction-handle] [on-error]
on-error::= on_error statement... end_error

transaction-handle
Specifies the transaction you want to commit. If the
transaction you want to commit has a transaction handle
associated with it, you must use that handle when you commit
the transaction. If you do not specify a transaction handle on a
commit command, InterBase commits the “default” transac-
tion. The default transaction is what InterBase starts when
you use a start_transaction command without a handle.

on_error
Specifies the action to be performed if an error occurs during
the commit operation.

statement
A host language or GDML statement. If you include more than
one statement, you must separate them using the host lan-
guage convention.

end_error
Terminates the on_error clause.

The following example starts an unnamed transaction, performs
some unspecified data manipulation, and then writes the
changes to the database:

start_transaction concurrency;

commit ;

GDML Statements, Commands, Declarations and Clauses 4-11

Commit

4-12

The following C program starts two separate transactions, one to
get a badge number, and the other to store a new employee. This
simplified program does not contain error handling.

/* program map */

#include <stdio.h>
#include <ctype.h>

database db = filename ’'emp.gdb’;
based on badge_num.badge badge_type;

int store_emp_tr,
to_be_stored;

char store_num [8];
char super_id[8];

main ()
{
ready;
start_transaction store_emp_tr;
printf ("Enter the number of new employees: ");
gets (store_num);
to_be_stored = atoi (store_num) ;
while (to_be_stored > 0) {
store (transaction_handle store_emp_tr) e in
employees using
e.badge = get_badge();
printf ("Enter first name: ");
gets (e.first_name);

printf ("Enter last name: ");
gets (e.last_name);
printf ("Enter supervisor’s id: ");

gets (super_id);
e.supervisor = atoi (super_id);
printf ("Enter department: ");
gets (e.department) ;
end_store;
to_be_stored--;
}
commit store_emp_tr;
finish;

GDML Statements, Commands, Declarations and Clauses

Commit

get_badge ()

{
int get_badge_tr;

get_badge_tr = 0;
start_transaction get_badge_tr;

for (transaction_handle get_badge_tr) b in
badge_num

badge_type = b.badge;

modify b using

b.badge = b.badge + 1;

end_modify;
end_for;
commit get_badge_tr;
return badge_type;

}

The following example is the Pascal version of the preceding pro-
gram:

program map (input_output) ;

database db = filename ’‘emp.gdb’;

type Dbadge_type = based on badge_num.badge;
var
store_emp_tr: gds_Shandle:= nil;
to_be_stored: integer;
function get_badge : badge_type;
var
get_badge_tr: gds_Shandle;
begin
get_badge_tr := nil;
start_transaction get_badge_tr;
for (transaction_handle get_badge_tr) b in
badge_num
get_badge := b.badge;
modify b using
b.badge := b.badge + 1;
end_modify;
end_for;

GDML Statements, Commands, Declarations and Clauses 4-13

Commit

Troubleshooting

See Also

4-14

commit get_badge_tr;
end; { function get_badge }

begin
ready;
start_transaction store_emp_tr;
write (’Enter the number of new employees: ');
readln (to_be_stored);
while to_be_stored > 0 do
begin
store (transaction_handle store_emp_tr) e in
employees using
e.badge := get_badge;
write (’Enter first name: ’);
readln (e.first_name);
write (’Enter last name: ');
readln (e.last_name);
write (’Enter supervisor’‘s id: ’');
readln (e.supervisor);
write (’Enter department: ’);
readln (e.department);
end_store;

to_be_stored := to_be_stored - 1;
end;
commit store_emp_tr;
finish;
end.

See the Appendix for a discussion of errors and error handling.
See the entries in this chapter for:

e start_transaction
e transaction-handle
* on_error

See also the chapter on transactions in the Programmer’s Guide.

GDML Statements, Commands, Declarations and Clauses

Create_Blob

Create Blob

Function

Syntax

Options

Example

The create_blob statement creates a blob.

create_blob blob-variable in dbfield-expression
[from subtype to subtype] [on-error]
on-error::= on_error statement... end_error

blob-variable
A temporary name used for name recognition. It is associated
with individual segments in the field and is used much like a
context variable.

dbfield-expression
A value expression that identifies a field containing blob data.

from subytpe to subtype
Specifies the pre-defined subtype a blob filter converts from
and the pre-defined subtype it converts to.

on_error
Specifies the action to be performed if an error occurs during
the create operation.

statement
A host language or GDML statement. If you include more than
one statement, you must separate them using the host lan-
guage convention.

end_error
Terminates the on_error clause.

The following example creates a blob field and writes segments
to the blob field:

database db = ’atlas.gdb’;
main ()
{

int 1i;

ready;
start_transaction;
store tour in tourism using

GDML Statements, Commands, Declarations and Clauses 4-15

Create_Blob

4-16

printf ("Enter state code: ");

gets (tour.state);

printf ("Enter city name: ");

gets (tour.city);

printf ("Enter zip code: ");

gets (tour.zip);

create_blob b in tour.guidebook;

printf ("Enter new blurp one line at a\

time.\n");
printf ("Terminate with <EOF>.\n");
while (gets(b.segment) != 0) {
for (i=strlen(b.segment);i>=0;i--){
if (b.segment[i] != * 7)) {

b.segment [i+1]="\n";
b.segment [1+2]1=0;
b.length = i+1;
1=0;
}
}
PUT_SEGMENT;
}
close_blob b;
end_store;
commit;
finish;

}

The following example is the Pascal version of the preceding pro-

gram:

begin

ready;

start_transaction;

store tour in tourism using
write (’'Enter state code: ');
readln (tour.state);
write (’Enter city name: ');
readln (tour.city);
write (’'Enter zip code: ’);
readln (tour.zip);
create_blob b in tour.guidebook;

writeln (’Enter new blurp one line at a time.’);

writeln (’Terminate with <EOF>.');
repeat

GDML Statements, Commands, Declarations and Clauses

Troubleshooting

See Also

begin
readln (input, b.segment) ;
for i := sizeof (b.segment) downto 1 do
if b.segment[i] <> ' ' then exit;
i := 1 + 1;
b.segment [i] := chr(10);
b.length := 1i;
put_segment b;
end;

until eof (input);
reset (input);
close_blob b;

end_store;

commit ;

finish;

end.

Create_Blob

See the Appendix for a discussion of errors and error handling.

See also the entry for on_error

See also the entry in Chapter 3 for value expression.

See also the chapter on using blobs in the Programmer’s Guide.

GDML Statements, Commands, Declarations and Clauses

4-17

Database

Database

Function

Syntax

Options

4-18

The database declaration specifies the database to be accessed
by a program or program module. Because the database decla-
ration identifies the source of metadata, it must precede any
database access. However, it is the ready command or equiva-
lent action that actually opens the database for access.

The database declaration optionally supports the specification
of a runtime database. However, the runtime database is more
appropriately referenced in (and opened by) the ready com-
mand. For example, your program may access a number of data-
bases that use common metadata, but contain different data.
Applications of this type include CAD/CAM and test control sys-
tems, in which a boilerplate database supplies metadata (for
example, relations for wing struts and other aircraft assemblies)
while instances of that database contain actual data (individual
databases for IL-62, IL-70, and IL-82 aircraft designs).

The use of the boilerplate database for metadata helps ensure
that you are keeping track of the same data for all your aircraft
designs.

If you find that the runtime database is always the same, and dif-
ferent from the compiletime database, you can add the runtime
clause to the database declaration. If you choose only one com-
piletime identifier, gpre uses that identifier for both compila-
tion and runtime, unless you provide a runtime file in the ready
command.

database database-handle = [declaration-scope]
[compiletime] [filename] database-filespec
[runtime {[filename] database-filespec |
host-variable}]

declaration-scope::={static | extern}

database-handle
Declares a name you can use when you have to reference mul-
tiple databases in a program.

GDML Statements, Commands, Declarations and Clauses

Database

Note

Many of the examples in this manual use the database
handle DB, which is a reserved word in VAX COBOL.
You cannot use reserved words as database handles.

compiletime
Specifies the database that gpre uses to look up field referenc-
es when it preprocesses a file.

runtime
Specifies the database that the program uses at runtime.

declaration-scope
Declares the scope of the handle specified by the
database-handle clause. If you do not specify a declaration
scope, the scope of the handle defaults to global.

static
Specifies the scope of the declaration as only the module con-
taining the database declaration.

extern
Specifies the database handle corresponds to one in another
module with a global scope.

If all database handles in a module have the same scope, the
handle for the default transaction also uses that scope. Other-
wise, the handle for the default transaction has a global scope.

filename
An optional word.

database-filespec
Specifies the database from which the preprocessor reads the
metadata. The database-filespec can be:

* Afilename enclosed in single () or double (”) quotation
marks, depending on your host language conventions.

* Alogical name that resolves to a quoted file specifica-
tion.

The file specification can contain the full pathname, including
the name of the node on which the database is stored. If you are
in a directory other than the one that contains the database
file, the file specification must include the pathname. If the da-
tabase is on another node, the filespec must include the node

GDML Statements, Commands, Declarations and Clauses 4-19

Database

name and pathname. You can define links or logical names for
the database file.

File specifications for remote databases have the following
form:

From To Syntax
VMS VMS via DECnet node-name::filespec
VMS ULTRIX via DECnet node-name::filespec
VMS non-VMS and non-ULTRIX node-name”Milespec
ULTRIX VMS via DECnet node-name::filespec
Apollo Apollo //node-name/filespec
Everything Else Whatever is left node-name:filespec
Be sure that what follows the node name and punctuation is a
valid file specification on the target system. Use brackets,
slashes, and spaces as appropriate.
host-variable
Specifies a host language variable to accept the location of a da-
tabase at runtime.
Examples ‘The following C program includes two database declarations:

4-20

/* program mapper */

database atlas = compiletime filename ‘atlas.gdb’;
database gazetteer = compiletime filename
‘atlas.gdb’;

main ()
{
ready atlas;
ready gazetteer;
for s in atlas.states sorted by s.state
printf ("%s\n", s.state);
for ¢ in gazetteer.cities with c.state = s.state
printf ("%s\t%s\t%s\n",
c.city, c.latitude, c.longitude);
end_for;

GDML Statements, Commands, Declarations and Clauses

Database

end_for;

}
The following program is a Pascal version of the program above:

program mapper (input, output);

database atlas = compiletime filename ’atlas.gdb’;
database gazetteer = compiletime filename
'/usr/gds/examples/atlas.qgdb’;

begin

ready atlas;
ready gazetteer;
for s in atlas.states sorted by s.state
begin
writeln (s.state);
for ¢ in gazetteer.cities with c.state =
S.state
writeln (c.city, c.latitude,
c.longitude) ;
end_for;
end;
end_for;
finish atlas;
finish gazetteer;
end.

The following program uses a host variable to accept a user-sup-
plied database name:

database dbl =compiletime filename “atlas.gdb”
runtime filename database_name;

#include <stdio.h>

U

main()

{

long_tourism_count;
char database_name[30]

printf (“Enter database name:\n”);

GDML Statements, Commands, Declarations and Clauses 4-21

Database

scanf (“%s”, database_name) ;

U

}

Troubleshooting See the Appendix for a discussion of errors and error handling.

See Also See the entry for ready in this chapter.

4-22 GDML Statements, Commands, Declarations and Clauses

Display

Function

Syntax

Options

Display

The display statement displays a form or a menu on the user’s
screen. In a form, it also controls the fields that are displayed,
those that can be updated, the cursor position, and other charac-
teristics of the form. In a menu, it controls the orientation of the
display and how the menu appears in relation to other menus on
the screen.

In a form, each display attribute can appear at most once per dis-
play statement.

A display statement must occur inside a for_form—
end_form block or inside a for_menu—end_menu block.

Form format:

display form-context-variable[display-
attribute...]

display-attribute: :=

accepting field-list

cursor on field-name]
displaying field-list|
no_wait|

overriding field-1ist]
waking on field-list

field-list::= {*|field-commalist}::=
{field-name|subform. subform-field-name}

Menu format:

display menu-context-variable
(horizontal |vertical]
[transparent |opaque]

form-context-variable
Provides a name associated with this instance of the form in
the for_form statement.

field-1ist
Specifies an asterisk (*) indicating that all fields are listed, a
commalist of form field names without any qualifiers, or a field

GDML Statements, Commands, Declarations and Clauses 4-23

Display

4-24

in a subform. The subform variant allows you to both read and
write a field from a subform, a capability not available in the
for_item and put_item statements by themselves.

accepting
Specifies which fields can be updated.

cursor
Specifies the field on which the cursor is positioned when the

form appears.

displaying
Lists the fields for which values established in the program
should replace the fill characters established in the form defi-
nition. If you want to update the value between display state-
ments, you must signal the change to the form manager by
including the field in the displaying list of the second display
statement.

no_wait
Updates the information on the screen, but does not pause for
user input.

overriding
Lists the fields whose display attributes are controlled at run-
time by the program.

waking on
Lists the fields that cause control to return to the program if
the user changes their value. If you supply more than one field
in the waking on list, you should test the special field TERMI-
NATING FIELD when control returns to your program to see
which field caused the wake-up.

If the wakeup is on a repeating group item, you can reference
other items from the repeating group.

menu-context-variable
A qualifier that references the context of the menu in the for_-
menu statement.

horizontal|vertical
Specifies the orientation of the menu on the screen. The default
is vertical.

GDML Statements, Commands, Declarations and Clauses

Display

transparent | opaque
Transparent specifies that the menu displays on the screen
without obscuring what is already there. Opaque specifies that
the menu displays on the screen and covers what is already
there. The default is opaque.

Examples The following code fragment displays records from the STATES
relation through a form:

for form x in states
for s in states sorted by s.statehood
strcpy (x.state_name, s.state_name);
X.statehood = s.statehood;
X.area = s.area;
strcpy (x.state, s.state);
strcpy (x.capital, s.capital);
display x displaying statehood, area, state,
state_name, capital;
if (x.terminator == PYXIS_SKEY_ PF1)
break;
end_for;
end_form;

The following code fragment creates a dynamic menu displaying
the six New England states plus an "Exit" option:

FOR_MENU M
strcpy (M.TITLE_TEXT, "Choose a state");
M.TITLE_LENGTH = strlen (M.TITLE_TEXT) ;
for (i = 0; 1 < 7; i++)
{
PUT_ITEM E IN M
strcpy (E.ENTREE_TEXT, state_list [i]);
E.ENTREE_LENGTH = 2;
E.ENTREE_VALUE = 1i;
END_ITEM;
}
DISPLAY M;
return M.ENTREE_VALUE;
END_MENU

Troubleshooting See the Appendix for a discussion of errors and error handling.

GDML Statements, Commands, Declarations and Clauses 4-25

Display

See Also See the entries in this chapter for:

e case_menu
e case form
e for_menu

For more information, see the chapter on using forms in GDML
in the Forms Guide.

4-26 GDML Statements, Commands, Declarations and Clauses

Erase

Function

Syntax

Options

Example

Troubleshooting

Erase

The erase statement removes records from an open record
stream.

You cannot erase records from views or joins. Rather, you must
erase them through the source relations.

erase context-variable [on-error]
on-error::= on_error statement... end_error

context-variable
Specifies the record stream from which to erase the record(s).
You must declare the context-variable in a for or start_stream
statement.

on_error
Specifies the action to be performed if an error occurs during
the erase operation.

statement
A host language or GDML statement. If you include more than
one statement, you must separate them using the host lan-
guage convention.

end_error
Terminates the on_error clause.

The following statements prompt for a field value and then delete
records with that value:

based_on states.state statecode;
U

printf ("State to depopulate: ");

gets (statecode);

for ¢ in cities with c.state = statecode
erase C;

end_for;

See the Appendix for a discussion of errors and error handling.

GDML Statements, Commands, Declarations and Clauses 4-27

Erase

See Also See the entries in this chapter for:

e on_error
e for

e start_stream

4-28 GDML Statements, Commands, Declarations and Clauses

Event_Init

Function

Syntax

Options

Event_Init

Th event_init statement is part of the synchronous event wait
mechanism. This statement registers interest in one or more
events to the event manager. Each event of interest is entered
into the event table with an initial event count of zero. Once the
event manager knows a process has an interest in an event, it
keeps track of any occurrences of that event.

A process indicates it is ready to receive notification by executing
the event_wait statement. The event manager sends notice the
event occurred to processes that registered an interest and are
ready to receive notification.

During precompiling, when gpre finds an event_init statement,
it establishes the vector gds_$events and sets each element to
one of the argument strings from the event_init statement.
When your program expects to handle only one event, it can refer
to the event either by the name given in the trigger definition fol-
lowing the post verb or by the first element in the vector. When
your program expects to handle more than one event, your pro-
gram uses the array to determine which event occurred.

event_init event-handle [database-handle]
event-string commalist [on-error]

event-string ::= {quoted-string]
context-variable.database-field|

host-language-variable

on-error ::= on_error statement...end_error

event_handle
Specifies the event you want to wait for. The event-handle
lets you use the variable in different parts of the routine to
refer to the event.

database_handle
Specifies which database to use when waiting for an event.
This ensures clarity if multiple databases are used in the
same module.

GDML Statements, Commands, Declarations and Clauses 4-29

Event_Init

Example

4-30

If no database handle is specified, this value defaults to
the database named in the last database declaration.

event_string
The name of an event of interest.

quoted-string
A text literal enclosed in double quotes.

context-variable
A qualifier that references the context of an RSE in the
code. Can only be used within a for loop, or whenever else
context-variables are available.

database-field
A valid database field name. Can only be used within a for
loop, or whenever else context-variables are available.

host-language-variable
A host-language variable of the character array type.

on_error
Specifies the action to be performed if an error occurs during
the event_init operation.

statement
A host language or GDML statement. If you include more than
one statement, you must separate them using the host lan-
guage convention.

end_error
Terminates the on_error clause.

The following program depends on a trigger to post an event
naming a stock that changed by more than fifteen cents. This
program registers its interest in such an event for stocks named
in the event_init statement, then waits for such an event. When
one of the events of interest occur, the event manager notifies the
process. It “ wakes up” and the program prints a message.

DATABASE DB = ‘stocks.gdb’;
#define number_of_stocks 5
char *event_names [] =
{"APOLLO", "DEC", "HP", "IBM", "SUN"};
main ()
{

int 1i;

GDML Statements, Commands, Declarations and Clauses

Event_lInit

double old_prices[number_of_stocks];
READY DB;

EVENT_INIT PRICE_CHANGE ("APOLLO", "DEC", "HP",
|IIBMH, IISUNII) ;

START_TRANSACTION;

for (1=0;i<number_of_stocks;i++)
{
FOR S IN STOCKS WITH S.COMPANY = event_names/[i]
old_prices[i]=S.PRICE;
END_FOR;
}
COMMIT;
while (1)
{
EVENT_WAIT PRICE_CHANGE;

START_TRANSACTION;

for (i=0; i<number_of_stocks;i++)
{
if (gds_Sevents[i])
{
FOR S IN STOCKS WITH
S.COMPANY = event_names[i]
printf ("STOCK: %s OLD: %f NEW: %f\n",
S.COMPANY,old_prices[i],S.PRICE)
old_prices[i]=S.PRICE;
END_FOR;
}

7

}
COMMIT;

}
}

Troubleshooting See the Appendix for a discussion of error handling and a list of
errors.

GDML Statements, Commands, Declarations and Clauses 4-31

Event_lInit

See Also See the entries in this chapter for:

e event_wait
e on_error

e database

4-32 GDML Statements, Commands, Declarations and Clauses

Event_Wait

Event_Wait

Function The event_wait statement indicates that your program is ready
to receive notification of the occurrence of an event. This state-
ment causes the process running your application to “sleep” until
the event of interest occurs.

Your program must have already registered interest in an event
with the event_init statement.

Syntax event_wait event-handle [on-error]
on-error::= on_error statement...end_error
Options event_handle

Specifies the event you want to wait for. The event-handle lets
you use the variable in different parts of the routine to refer to
the event.

on_error
Specifies the action to be performed if an error occurs during
the event_wait operation.

statement
A host language or GDML statement. If you include more than
one statement, you must separate them using the host lan-
guage convention.

end_error
Terminates the on_error clause.

Example The following program depends on a trigger to post an event
naming a stock that changed by more than fifteen cents. This pro-
gram registers its interest in such an event for stocks named in
the event_init statement, then waits for such an event. When
one of the events of interest occur, the event manager notifies the
process. It “wakes up” and the program prints a message.

DATABASE DB = ’‘stocks.gdb’;
#define number_of_stocks 5
char *event_names [] =
{"APOLLO", "DEC", "HP", "IBM", "SUN"};
main()

GDML Statements, Commands, Declarations and Clauses 4-33

Event_Wait

{
int 1i;
double old_prices[number_of_stocks];

READY DB;

EVENT_INIT PRICE_CHANGE ("APOLLO", "DEC", "HP",
IIIBM“, IISUN") ;

START_TRANSACTION;

for (1=0;i<number_of_stocks;i++)
{
FOR S IN STOCKS WITH S.COMPANY = event_names[i]
0ld_prices[i]=S.PRICE;
END_FOR;
}
COMMIT;
while (1)
{
EVENT_WAIT PRICE_CHANGE;

START_TRANSACTION;

for (1i=0; i<number_of_stocks;i++)
{
if (gds_S$Sevents[il])
{
FOR S IN STOCKS WITH
S.COMPANY = event_names([i]
printf ("STOCK: %s OLD: %f NEW: $ft\n",
S.COMPANY, 0ld_prices[i],S.PRICE)
old_prices[1]=S.PRICE;
END_FOR;
}

’

}
COMMIT;

}
}

Troubleshooting See the Appendix for a discussion of error handling and a listing
of errors.

4-34 GDML Statements, Commands, Declarations and Clauses

Event_Wait
See Also See the entries in this chapter for:

* event_init

* on_error

GDML Statements, Commands, Declarations and Clauses 4-35

Fetch

Fetch

Function

Syntax

Options

4-36

The fetch statement advances the record stream pointer to
the next record in a record stream, thus selecting the current
record of that stream for whatever retrieval or manipulation
operation you choose.

The fetch statement:

¢ Can be used only in a record stream created by a start_-
stream statement.

* Must precede any other statement that affects the current

record.
fetch stream-name [at end statement... end_fetch]
[on-error]
on-error::= on_error statement... end_error

stream-name
Specifies the stream from which to fetch records. You must
open the stream with a start_stream statement.

statement
Specifies GDML or host language statements to be executed on
each record in the stream.

on_error
Specifies the action to be performed if an error occurs during
the fetch operation.

statement
A host language or GDML statement. If you include more than
one statement, you must separate them using the host lan-
guage convention.

end_error
Terminates the on_error clause.

at end
Specifies the action to be taken when the program reaches the
end of the stream. If you include more than one statement, you
must separate them using the host language convention.

GDML Statements, Commands, Declarations and Clauses

Examples

The following program demonstrates the use of the start_-

stream statement in a loop that may be terminated
by user interaction:

/* program map */
#include <stdio.h>
#include <ctype.h>

database db = filename ’‘atlas.gdb’;

char genug [3];
int end_of_stream;

main()
{
start_stream geodata using ¢ 1in cities
sorted by c.latitude, c¢.longitude;

end_of_stream = 0;
fetch geodata
at end end_of_stream = 1;

end_fetch;

while (!end_of_stream) {
printf ("%s\t%s\t%s\t%s\t%s\n",

c.latitude, c.longitude, c.altitude,

c.city, c.state);
printf ("Seen enough? (Y/N) ");
gets (genug) ;

if (genug[0] == 'Y’ || genugl0] = 'y’)

end_of_stream = 1;

fetch geodata
at end {
end_of_stream = 1;

Fetch

printf ("Sorry, there is no more.\n");

}
end_fetch;
}
end_stream geodata;
commit;
finish;

GDML Statements, Commands, Declarations and Clauses

4-37

Fetch

Troubleshooting

See Also

4-38

The following example is the Pascal version of the preceding C

program:

program map (input_output) ;
database db = filename ‘atlas.
varend_of_stream: boolean;
genug char;
begin
start_stream geodata using
sorted by c.latitude, c
end_of_stream := false;
fetch geodata
at end end_of_stream :=
end_fetch;

gdb’;

¢ in cities

.longitude;

true;

while not end_of_stream do begin

writeln
c.altitude,
c.city, c.state);
write (’Seen enough?
readln (genug) ;
1f genug = 'Y’ then
end_of_stream :=
fetch geodata
at end begin
end_of_stream :=
writeln (’Sorry,
end;
end_fetch;
end;
end_stream geodata;
commit;
finish;
end.

(c.latitude,

(Y/N)

c.longitude,

")

true;

true;
there is no more.

See the Appendix for a discussion of errors and error handling.

See the entries in this chapter for:

* start_stream

¢ on_error

GDML Statements, Commands, Declarations and Clauses

Finish

Function

Syntax

Options

Examples

Finish

The finish command closes either the default database (that is,
a database opened without a database handle) or a specific data-
base identified by a database handle.

finish [database-handle-commalist] [on-error]
on-error ::= ON_error statement...end_error

database-handle
Specifies which open database or databases you want to close.
A database declaration declares this handle.

If you use the optional database-handle clause, the database

handle must have been previously associated with a database
in the database declaration. This clause lets you close specific
databases if you are using multiple databases in your program.

If you do not specify a database handle and do not use the -m
option with gpre, the finish command commits the default
transaction. If you want to close a specific database, you must
first commit or roll back the transaction.

Non-default transactions that have not been committed are ef-
fectively rolled back by a finish command.

On_error
Specifies the action to be performed if an error occurs during
the finish operation.

statement
A host language or GDML statement. If you include more than
one statement, you must separate them using the host lan-
guage convention.

end_error
Terminates the on_error clause.

The following statement closes any open databases:

finish;

GDML Statements, Commands, Declarations and Clauses 4-39

Finish

The following statements close the databases identified by the
handle:

finish atlas;
finish mapper;

Troubleshooting See the Appendix for a discussion of errors and error handling.
See Also See the entries in this chapter for:

* on_error
¢ database
* commit

¢ rollback

4-40 GDML Statements, Commands, Declarations and Clauses

For

Function

Syntax

Options

For

The for statement executes a statement or group of statements
once for each record in a stream formed by a record selection
expression.

You can nest for loops to display a hierarchy of records or to join
relations across databases.

for [request-option] rse
statement. ..
end_for [on_error]

on_error ::= on_error statement...end_error

request-option
Specifies a transaction handle and/or request handle that
determine the transaction and/or request in which the for loop
executes.

rse
Specifies the record selection criteria used to create the record
stream.

The scope of a context variable declared in the RSE is the state-
ment in which it was declared. Therefore, you can

re-use a context variable from a for statement when you end
the for loop with end_for and begin a new record stream with
a for or start_stream statement.

You cannot reference more than one database in a record
selection expression. Therefore, use nested for loops to join re-
lations across databases.

statement
Specifies GDML or host language statements to be executed
within the for loop. The statements you include in a for loop
are subject to the following rules:

¢ You can nest for statements within other for state-
ments.

GDML Statements, Commands, Declarations and Clauses 4-41

For

Examples

4-42

¢ Ifyou include more than one statement, you must sep-
arate them using the host language convention.

* Ifyouuse other GDML statements in the for loop, those
statements can use the context variables declared in
the for statement or in an outer statement, as well as
contexts declared in the current for statement.

on_error
Specifies the action to be performed if an error occurs during
the statement’s operation.

statement
A host language or GDML statement. If you include more than
one statement in an on_error clause, you must separate them
using the host language convention.

end_error
Terminates the on_error clause.

The following statements retrieve records through a for loop:

for ¢ in cities with population gt 1000000
printf ("%$s\t%s\t%d\n", c.city, c.state,
c.population) ;

end_for;

The following statements join two relations using a for loop:

for ¢ in cities cross s in states with c.state =
s.state
printf ("%s\t%s\t%d\n", c.city, s.state_name,
c.population) ;
end_for;

The following statements use an outer for loop to create a record
stream from which a store statement takes some values, host
variables supply some values, and unreferenced fields are set to
missing:

for oldcity in cities with oldcity.city = hostvarl
store newcity in cities using
strcpy (newcity.city, hostvar2);
strcpy (newcity.state, oldcity.state);
newcity.population =
oldcity.population * hostvar3;
newcity.altitude = oldcity.altitude;

GDML Statements, Commands, Declarations and Clauses

For

end_store;
end_for;

The following example lists employees by department:

/* program print_depts */
#include <stdio.h>
database db = filename ’‘emp.gdb’;

main()
{
for d in departments sorted by d.department
printf ("%s manager %d\n", d.department,
d.manager) ;
for e in employees with
e.department = d.department sortedbye.badge
printf ("\t%s\t%s\n", e.last_name,
e.first_name) ;
end_for;
end_for;

}

The next example demonstrates the way to join relations across
databases. It uses two copies of the sample atlas databases, one
of which is in your current directory and the other in the exam-
ples directory provided with InterBase. The statements display
values from the STATES relation in one copy of the atlas data-
base, and values stored in another database from CITIES in
those states. The join term is the STATE field in both relations:

/* program mapper */

#include <stdio.h>
#include <ctype.h>

database atlas = compiletime filename ‘atlas.gdb’;
database gazetteer = compiletime filename
"atlas.gdb’;

main ()

{

ready atlas;
ready gazetteer;

GDML Statements, Commands, Declarations and Clauses 4-43

For

4-44

for s in atlas.states sorted by s.state
printf ("%s\n", s.state);
for ¢ in gazetteer.cities with c.state = s.state
printf ("%s\t%s\t%s\n",
c.city, c.latitude, c.longitude);
end_for;
end_for;
finish atlas;
finish gazetteer;

}

The following program hires everybody’s offspring and assigns
them new badge numbers.

Each request (that is, each for and store) must use the same
request options, even though they are nested. The modify state-
ment is not a separate request and does not require a transaction
handle.

The outer for statement is in the default transaction, so that it
will not read the newly stored records and start prompting for
employee grandchildren:

/* program nested_for */
#include <stdio.h>

database db = filename ’‘emp.gdb’;

int update_tr;
char check [3];
int fnl, 1Inl;

main()
{
ready;
start_transaction update_tr consistency read_write
reserving

badge_num, employees for protected write;

start_transaction;

for e in employees
printf ("Should we hire %s %s’s kid? ",
e.first_name, e.last_name);
gets (check);

GDML Statements, Commands, Declarations and Clauses

Troubleshooting

See Also

For

if ((check([0] == 'y’) |l (check[0] == 'Y")) {
for (transaction_handle update_tr) b in
badge_num
store (transaction_handle update_tr)
n_e in employees using
printf ("What’s the kid’s first
name? ");
gets (n_e.first_name);
strcpy (n_e.last_name, e.last_name);
printf ("What’s the kid’s date of
birth? ");
gets (n_e.birth_date.char[20]);
n_e.badge = b.badge + 1;
strcpy (n_e.department, "NEP") ;
n_e.supervisor = 13;
end_store;
modify b using
b.badge = b.badge + 1;
end_modify;
end_for;
}
end_for;
commit update_tr;
commit;
finish;

}
See the Appendix for a discussion of errors and error handling.
See the entries in this chapter for:

* request-option-clause
® on_error
¢ for blob

See the entry in Chapter 3 for record selection expression.

GDML Statements, Commands, Declarations and Clauses 4-45

For Blob

For Blob

Function

Syntax

Options

4-46

The for blob statement retrieves data from a field that contains
blob data.

The for blob statement is the easiest way to access blobs. You
should use it when you process whole segments of a blob field or
the entire contents of the blob buffer, without calling special for-
matting routines.

To read or write a blob field with the for blob statement:
s Construct a loop with the “other” for statement. This outer

for loop creates a record stream.

¢ Construct a loop with the for blob statement. This inner loop
swings through the blob, returning a segment at a time.

¢ Perform whatever action(s) you want to the blob under the
control of the inner loop.

* Return control to the outer loop when you are finished with
the blob field.

for blob-variable in dbfield-expression
[from subytpe to subtypel [on-error]

statement
end_for
on-error::= on_error statement end_error

blob-variable
A temporary name used for name recognition. It is associated
with individual segments in the field and is used very much
like a context variable.

dbfield-expression
A value expression that identifies a field containing blob data.

from subytpe to subtype
Specifies the pre-defined subtype a blob filter converts from
and the pre-defined subtype it converts to.

GDML Statements, Commands, Declarations and Clauses

Examples

For Blob

statement
Any valid host language or GDML statement. Use host
language punctuation to terminate each statement.

on_error
Specifies the action to be performed if an error occurs during
the specified operation.

statement
A host language or GDML statement. If you include more than
one statement in an on_error clause, you must separate them
using the host language convention.

end_error
Terminates the on_error clause.

The following statements create a record stream, display several
structured fields from those records, and display a blob from each
of those records:

for tour in tourism sorted by tour.state
printf ("%s\t%s\t%s\n",
tour.city, tour.state, tour.zip);
printf ("\n");
for blob in tour.guidebook
blob.segment [blob.length] = 0;
printf ("%s", blob.segment) ;
end_for;
printf ("\n");
end_for; {for loop}

The following program copies a blob to another database by
retrieving it in a for blob statement:

/* program update_guide */
#include <stdio.h>

database atlas = filename ‘atlas.gdb’;
database guide = filename ‘coastal_guide.gdb’;

main ()
{
start_transaction;
for t in atlas.tourism
store new in guide.tourism using
strcpy (new.state, t.state);

GDML Statements, Commands, Declarations and Clauses 4-47

For Blob

Troubleshooting

See Also

4-48

strecpy (new.city, t.city);
strcpy (new.zip, t.zip):
create_blob n_guide in new.guidebook;
for o_guide in t.guidebook
strcpy (n_guide.segment,
o_guide.segment) ;
n_guide.length = o_guide.length;
put_segment n_guide;
end_for;
close_blob n_guide;
end_store;
end_for;
commit ;
finish;

}

See the Appendix for a discussion of errors and error handling.
See the chapter on using blobs in the Programmer’s Guide.

See also the entry in this chapter for on_error and the entry in
Chapter 3 for value-expression.

GDML Statements, Commands, Declarations and Clauses

For Form

Function

Syntax

Options

For Form

The for_form statement binds a form definition to a window and
creates a context in which form fields can be referenced. This
statement does not cause a form to appear on the screen. Use the
display substatement to display the form.

For form statements can be nested. As the forms are displayed,
they will overlay each other. Unless a form is specified as tag or
transparent, it completely covers the previously displayed form.

for_form [options] form-context-variable in

[database-handle.] form-name

form-context-variable.field-name [.state]
statement end_form

options ::= {transparent|tagl|form_handle form-

handle-variableltransaction_handle transaction-

handle-variable}

transparent
Pushes a transparent form over the current form, covering only
those portions that are actually behind text on the top form.

tag
Displays a tag form horizontally in the bottom line of the form.

form_handle
Specifies a variable by which gpre can refer to the form in its
calls to pyxis. If you do not specify a form-handle, gpre assigns
it a unique name. If you do specify a form-handle, you can use
the variable to invoke the form in different routines.

form-context-variable
The context variable qualifies references to the form fields to
distinguish them from database fields or program variables.

form-name
Specifies the form to bind. The form name must be the name of
a form already defined in a database. If you include a database
handle, the form must be in that database. Otherwise, gpre
searches databases referenced by the program, beginning with
the most recently declared database.

GDML Statements, Commands, Declarations and Clauses 4-49

For Form

statement
Any host language statement or a GDML display, for_item,
or put_item statement. See the entries in this chapter for
those statements. The for_form statement allows free refer-
ence to form fields inside the for form and end_form struc-
ture. If your program performs a statement, such as a return
from a subprogram, that would cause it not to drop through to
the end_form terminator, it should first execute a call to pyx-
is_$pop_window. The syntax for this call follows. Gpre auto-
matically provides the context of gds_window.

pyxis_$pop_window (&gds_$window)
All other languages:

pyxis_$pop_window (gds_$window)

Example The following code fragment displays records from the STATES
relation through a form:

for _form x in states
for s in states sorted by s.statehood
strcpy (X.state_name, s.state_name);
x.statehood = s.statehood;
X.area = s.area;
strcpy (x.state, s.state);
strcpy (x.capital, s.capital);
display x displaying statehood, area, state,
state_name, capital;
if (x.terminator == PYXIS_SKEY_PF1)
break;
end_for;
end_form;

Troubleshooting See the Appendix for a discussion of errors and error handling.

4-50 GDML Statements, Commands, Declarations and Clauses

See Also

See the entries in this chapter for:

GDML Statements, Commands, Declarations and Clauses

case_menu
display
for_item

put_item

For Form

4-51

For_ltem

For_ltem

Function

Syntax

Options

4-52

The for_item statement is used inside a for_form statement to
read items from a repeating group. The for_item statement
allows only read access to the fields in its substatements. It is
used in a for_menu statement to read the entrees in a menu.

Table 2-1.

Form format:

for item subform-context-variable in

form-context-variable.subform-name
statement. ..

end_item

Menu format:

for item entree-context-variable in menu-

context-variable
entree-assignment-statements

end_item

subform-context-variable
Specifies a context variable for the subform. This context vari-
able must uniquely identify the subform in the form.

form-context-variable.subform-name

Specifies the subform name qualified with the context variable
associated with the form in which the subform exists.

entree-context-variable
A qualifier that references the context of the entree in the
for_item statement.

menu-context-variable
A qualifier that references the context of the menu in the for_-
menu statement.

entree-assignment-statements
Host language statements that read the values of:

GDML Statements, Commands, Declarations and Clauses

Examples

Troubleshooting

See Also

For_ltem

* entree-context-variable.entree_text
® entree-context-variable.entree_length
* entree-context-variable.entree_value

The following code fragment modifies database records appear-
ing in a subform:

FOR_ITEM FC IN F.CITY_POP_LINE
if (FC.POPULATION.STATE ==
PYXIS_SOPT_USER_DATA)
FOR C IN CITIES WITH C.CITY = FC.CITY
AND C.STATE = F.STATE
MODIFY C USING
C.POPULATION = FC.POPULATION;
END_MODIFY;
END_FOR;
END_ITEM;

The following C code fragment prints the name and population of
each city that is in menu M:

FOR_ITEM E IN M
printf ("%s has a population of %d\n",
E.ENTREE_TEXT, E.ENTREE_VALUE) ;
END_ITEM

See the Appendix for a discussion of errors and error handling.
See the entries in this chapter for:

* case_menu
¢ display

GDML Statements, Commands, Declarations and Clauses 4-53

For_Menu

For Menu

Function

Syntax

Options

The for_menu command lets you create a dynamic menu. A
dynamic menu obtains the specifications for its title, entries and
format while the application runs. These specifications most
often come from dynamic user input or from database values.
This differs from the case_menu command which requires that
you specify all of these characteristics before the application is
compiled.

for menu [(menu_handle menu-handle)] menu-

context-variable
menu-title-assignment-statements
entree-assignment-statements
display statement
menu-result-statements

end_menu

menu_handle

Specifies a variable by which gpre can refer to the menu in its
calls to Pyxis. If you do not specify a menu-handle, gpre as-
signs it a unique name. If you do specify a menu-handle, you
can use the variable to invoke the menu in different routines.

menu-context-variable
A qualifier that references the context of the menu in the for_-
menu statement.

menu-title-assignment-statements

Host language statements in which you assign values to menu-
context-variable.title_text and menu-context-
variable.title_length. These statements must appear between
the for_menu statement and the end_menu statement, and
before the display statement.

entree-assignment-statements
Host language statements in which, within a put_item state-
ment, you assign values to:

* entree-context-variable.entree_text

* entree-context-variable.entree_length

® entree-context-variable.entree_value

4-54 GDML Statements, Commands, Declarations and Clauses

Example

For_Menu

These statements must appear between the for_menu state-
ment and the end_menu statement, and before the display
statement. For more information, see the entry in this chapter for
the put_item statement.

display statement

The display statement displays a menu on the user’s screen.
This statement must appear between the for_menu statement
and the end_menu statement and after all title and entree as-
signment statements. For more information, see the entry in
this chapter for the display statement.

menu-result-statements
Host language statements that use the values of:

®* menu-context-variable.entree_text
®* menu-context-variable.entree_length

® menu-context-variable.entree_value
for the entree selected from the menu.

The menu-result-statement also reads the menu-context-vari-
able.terminator to determine what key was pressed to termi-
nate the menu selection. This statement must appear between
the for_menu statement and the end_menu statement, and
after the display statement.

The following C code fragment creates a menu consisting of the
first ten cities in the CITIES relation. Once the user chooses a
city, the program displays the selected city name and its popula-
tion:

FOR_MENU M
strcopy (M.TITLE_TEXT, "Choose a City");
M.TITLE_LENGTH = strlen(M.TITLE_TEXT)
FOR FIRST 10 C IN CITIES SORTED BY DESCENDING
POPULATION
PUT_ITEM E IN M
strcpy (E.ENTREE_TEXT, C.CITY);
E.ENTREE_LENGTH = strlen (E.ENTREE_TEXT) ;
E.ENTREE_VALUE = C.POPULATION;
END_ITEM
END_FOR
for (;;)

{

GDML Statements, Commands, Declarations and Clauses 4-55

For_Menu

DISPLAY M VERTICAL
if (M.TERMINATOR == PYXI S_SKEY_PF1)
break;
printf ("You chose %s, population %d\n",
M.ENTREE_TEXT, M. ENTREE_VALUE) ;
}
END_MENU;

Troubleshooting See the Appendix of this manual for a discussion of errors and
error handling.

See Also See the entries in this chapter for:

* case_menu

display

for_item

e put_item

4-56 GDML Statements, Commands, Declarations and Clauses

Get_Segment

Get_Segment

Function

Syntax

Options

Example

The get_segment statement reads a portion of a blob field.
Before you can read a blob, you must open it with an open_blob
statement.

get_segment blob-variable [on-error)
on-error::= on_error statement... end_error

blob-variable
A temporary name used for name recognition. It is associated
with individual segments in the field and is used like a context
variable. You must have assigned the blob variable in an earli-
er open_blob statement.

on_error
Specifies the action to be performed if an error occurs during
the close operation.

statement
A host language or GDML statement. If you include more than
one statement in an on_error clause, you must separate them
using the host language convention.

end_error
Terminates the on_error clause.

The following example creates a record stream, opens a blob field,
and reads segments from the blob field:

for tour in tourism cross s in states over state
sorted by s.state
printf ("%s\t%s\t%d\n",
tour.zip, s.state_name, s.area):;
open_blob b in tour.guidebook;
get_segment b;

while ((gds_$status [1] == 0) ||
(gds_s$status [1] == gds_$segment)) {
b.segment [b.length] = 0;

printf ("%s", b.segment);
get_segment b;
}

GDML Statements, Commands, Declarations and Clauses 4-57

Get_Segment

close_blob b;
printf ("\n");
end_for;

Troubleshooting See the Appendix for a discussion of errors and error handling.
See Also See also the entries in this chapter for:

e open_blob
¢ close_blob
e on_error

See the chapter on using blobs in the Programmer’s Guide.

4-58 GDML Statements, Commands, Declarations and Clauses

Modify

Function

Syntax

Options

Example

Modify

The modify statement updates a field or fields in a record from
a record stream.

You cannot modify records through views. Rather, you must mod-
ify them through the source relations. Finally, do not update
records whose record selection expression includes a reduced to
clause.

modify context-variable using statement
end_modify [on-error]

on-error ::= on_error statement...end_error

context-variable
Specifies the record stream from which the record is to be mod-
ified. You must declare context-variable in a for or start_-
stream statement.

statement
Specifies the action to be taken in modifying the record(s). The
statements are typically assignments. If you include more than
one statement, you must separate them using the host lan-
guage convention.

If the field you want to modify contains blob data, use the put_-
segment statement to modify it.

on_error
Specifies the action to be performed if an error occurs during
the close operation.

statement
A host language or GDML statement. If you include more than
one statement in an on_error clause, you must separate them
using the host language convention.

end_error
Terminates the on_error clause.

The following statements increase the value of the
POPULATION field in all cities in a given state:

GDML Statements, Commands, Declarations and Clauses 4-59

Mddw

Troubleshooting

See Also

4-60

based_on states.state statecode;

printf ("State code [2 characters, uppercase]:

gets (statecode) ;
for ¢ in cities with c.state = statecode
modify c using
c.population = c.population * 1.2;
end_modify;
end_for;

See the Appendix for a discussion of errors and error handling.

See the entries in this chapter for:

* on_error
e for
* start_stream

* put_segment

GDML Statements, Commands, Declarations and Clauses

On_Error

Function

Syntax

Options

Example

On Error

The on_error clause specifies the action the program takes if an
error occurs during the execution of the associated GDML opera-
tion.

All GDML statements can include an on_error clause. The
database declaration cannot.

on_error
statement
end-error

statement
A host language or GDML statement. If you include more than
one statement, you must separate them using the host lan-
guage convention.

The following program changes the type of ski areas, using rea-
sonable error handling. It prompts for the name of a database
and reprompts if there is an error during the ready command.
The modification takes place in a subroutine that returns the sta-
tus of the change. Validation errors are handled in the routine,
thus avoiding restarting either the transaction or the for loop.
Deadlocks are handled by the main routine, which rolls back and
retries. Other errors print the status, rollback and exit:

/* program ski_areas */
#include <stdio.h>
database db = filename ’‘atlas.gdb’;

based on ski_areas.name area_name;
based on ski_areas.type area_type;

char more []
int stat = 1;

main()

{
while (stat) {

GDML Statements, Commands, Declarations and Clauses 4-61

On Error

stat = open_database() ;

if (stat == -1) {
printf ("Toodles, kid!\n");
return;
}
}
while (more[0] == 'y’') {
printf ("Enter ski_area name: ");

gets (area_name) ;
printf ("Enter new area type: ");
gets (area_type) ;
stat = modify_type ();
while (!stat) {
if (gds_Sstatus [1] == gds_Sdeadlock)
stat = modify_type ()
else {
printf ("Farewell, cruel world...\n");
finish;
return;

}

’

}
printf ("Enter 'y’ to change another record:
")
gets (more);

}

finish;
}
int modify_type ()
{

start_transaction;
for ski in ski_areas with ski.name = area_name
re_mod:
modify ski using
strcpy (ski.type, area_type);
end_modify
on_error
if (gds_Sstatus [1] == gds_Snot_valid) ({
printf ("Type must be N, A, or B\n");
printf ("Enter new area type: ");
gets (area_type):;
goto re_mod;
}
else if (gds_S$status [1] != gds_S$deadlock

4-62 GDML Statements, Commands, Declarations and Clauses

On Error

gds_Sprint_status (gds_Sstatus);
rollback;
return 0;
end_error;
end_for
on_error
if (gds_S$status [1] != gds_S$deadlock)
gds_S$print_status (gds_S$status);
rollback;
return 0;
end_error;
commit;
return 1;

int open_database ()

{

char filename [40];

printf ("Please enter pathname of database
(‘quit’ to exit): ");
gets (filename) ;
if (!strcmp(filename, "quit"))
return -1;
else {
ready filename as db
on_error
printf ("Error during database open.
Status follows."):
gds_Sprint_status (gds_S$status);
printf("\n");
return 1;
end_error;
}
return 0;

}

The following example is a Pascal version of the preceding
program:

program ski_areas (input_output);
database db = filename ’‘atlas.gdb’;

type

GDML Statements, Commands, Declarations and Clauses 4-63

On Error

name = based on ski_areas.name;
a_type= based on ski_areas.type;
var
more: char := 'y’;

area_name : name;
area_type: a_type;

stat : integer;
function modify_type (area_name : name; area_type
a_type) : integer;
label
re_mod;
begin
modify_type := gds_Strue;

start_transaction;
for ski in ski_areas with ski.name = area_name

re_mod:
modify ski using
ski.type := area_type;
end_modify
on_error
begin
if gds_Sstatus [2] = gds_S$not_valid then
begin
writeln (’'Type must be N, A, or B’);
write ('Enter new area type: ');
readln (area_type);
goto re_mod;
end
else if gds_S$status [2] <> gds_S$deadlock
then
gds_Sprint_status (gds_Sstatus);
modify_type := gds_S$false;
rollback;
return;
end;
end_error;
end_for
on_error

if gds_S$status [2] <> gds_S$deadlock then
gds_Sprint_status (gds_S$status);
modify: type := gds_S$false;
end_error;
commit;

4-64 GDML Statements, Commands, Declarations and Clauses

On Error

end;
function open_database : integer;
var
filename: array [1l..40] of char;
begin
open_database := 0;
write (’Please enter pathname of database

(""quit’’ to exit): ');
readln (filename) ;
if filename = ’'quit’ then
open_database := -1
else begin
ready filename as db
on_error
begin
writeln (’'Error during database open.
Status follows.’);
gds_Sprint_status (gds_S$status);

writeln;
open_database := 1;
end;
end_error;
end;
end;
begin
repeat
begin
stat := open_database;
if stat = -1 then
begin
writeln ('Toodles, kid!’);
return;
end;
end;
until (stat = 0);
while more = 'y’ do
begin

write (’Enter ski_area name: ') ;

readln (area_name) ;

write (’Enter new area type: ');

readln (area_type);

stat := modify_type (area_name, area_type):
while stat = gds_s$false do

GDML Statements, Commands, Declarations and Clauses 4-65

On Error

Troubleshooting

See Also

4-66

begin
if gds_S$status [2] = gds_S$deadlock then
stat := modify_type (area_name,
area_type)
else
begin
writeln (’'Farewell, cruel world...’');
finish;
return;
end;
end;
write (’Enter "y" to change another
record:"’);
readln (more);
end;
finish;
end.

See the Appendix for a discussion of errors and error handling.

See the discussion of the status vector (gds$_status) in the chap-
ter on getting started with GDML in the Programmer’s Guide.

GDML Statements, Commands, Declarations and Clauses

Open_Blob

Open_Blob

Function The open_blob statement opens a blob so that its data may be
retrieved.

You can process blobs by using the get_segment and put_seg-
ment statements:

Syntax open_blob blob-variable in dbfield-expression
[from subtype to subtypel [on-error]
on-error ::= on_error statement... end_error
Options blob-variable

Declares a temporary name to be used for name recognition. It
is associated with individual segments in the field and is used
like a context variable.

dbfield-expression
A value expression that identifies a field containing blob data.
The context variable must be assigned in an outer for loop or
start_stream statement.

from subytpe to subtype
Specifies the pre-defined subtype a blob filter converts from
and the pre-defined subtype it converts to.

on_error
Specifies the action to be performed if an error occurs during
the close operation.

statement
A host language or GDML statement. If you include more than
one statement in an on_error clause, you must separate them
using the host language convention.

end_error
Terminates the on_error clause.

Example The following example creates a record stream from two rela-
tions, opens a blob field, and reads segments from the blob field:

for tour in tourism cross S in states over state
sorted by s.state

GDML Statements, Commands, Declarations and Clauses 4-67

Open_Blob

Troubleshooting

See Also

4-68

printf ("%$s\t%s\t%d\n", tour.zip, s.state_name,

s.area) ;
open_blob b in tour.guidebook;
get_segment b;
while (gds_Sstatus [1] == 0) {
b.segment [b.length] = 0;
printf ("%s", Db.segment);
get_segment b;

}
close_blob b;
printf ("\n");

end_for;

See the Appendix for a discussion of errors and error handling.

See also the entries in this chapter for:

* on_error
e for blob
¢ close_blob

See the chapter on using blobs in the Programmer’s Guide.

GDML Statements, Commands, Declarations and Clauses

Prepare

Function

Syntax

Options

Prepare

The prepare command signals your intention to commit either
the default transaction (that is, a transaction you start without
declaring a handle) or the transaction specified by the optional
transaction handle.

The prepare command executes the first phase of a two-phase
commit. The InterBase access method polls all participants and
waits for replies from each. It checks to see that no other data-
base activity can affect the transaction. The prepare command
is particularly useful for transactions that access multiple data-
bases or for transactions that involve both database and non-
database activity.

If the statement completes successfully, InterBase guarantees
that a commit command executes successfully if the disk is still
intact.

prepare |[transaction-handle]l [on-error]
on-error::= on_error statement... end-error

transaction-handle
Specifies which transaction to prepare to commit. If the trans-
action you want to commit has a transaction handle associated
with it, you must use that handle on the prepare and subse-
quent commit commands.

If you do not specify a handle on the prepare command,
InterBase prepares the “default” transaction. The default
transaction is what gets started when you use a start_trans-
action command without a handle.

OI_error
Specifies the action to be performed if an error occurs during
the close operation.

statement
A host language or GDML statement. If you include more than
one statement in an on_error clause, you must separate them
using the host language convention.

GDML Statements, Commands, Declarations and Clauses 4-69

Prepare

end_error
Terminates the on_error clause.

Example The following extract includes a prepare command with an
on_error clause:

prepare zip_code_update
on_error
printf ("Something failed during
prepare\n") ;
gds_Sprint_status (gds_Sstatus);
printf ("Starting rollback...\n");
rollback zip_code_update;
goto failure;
end_error;
commit zip_code_update;

Troubleshooting See the Appendix for a discussion of errors and error handling.
See Also See the entries in this chapter for:

¢ commit

¢ on_error

4-70 GDML Statements, Commands, Declarations and Clauses

Put_Item

Function

Syntax

Options

Examples

Put_item

The put_item statement is used inside a for_form statement to
write items to a repeating group. Each put_item statement adds
one row (that is, one group) to a subform. It is used inside a for_-
menu statement to add instances of entrees to a menu. You ter-
minate a put_item statement with an end_item.

Form format:

put_item subform-context-variable in
form-context-variable.subform-name statement
end_item

Menu format:

put_item entree-context-variable in
menu-context-variable entree-assignment-statements

subform-context-variable
Specifies a context variable for the subform. This context vari-
able must uniquely identify the subform in the form.

form-context-variable.subform-name
Specifies the subform name qualified with the context variable
associated with the form in which the subform exists.

entree-context-variable
A qualifier that references the context of the entree in the
for_item statement.

entree-assignment-statement
Host language statements in which you assign values to:

* entree-context-variable.entree_text

e entree-context-variable.entree_length

* entree-context-variable. entree_length
The following program adds records to a subform’s repeating
groups:

#include <stdio.h>

database db = "atlas.gdb";

GDML Statements, Commands, Declarations and Clauses 4-71

Put_item

main ()
{
ready;
start_transaction;
for s in states
for form f in city_states
strcpy (f.capital, s.capital);
f.statehood = s.statehood;
strcpy (f.state_name, s.state_name);
f.area = s.area;
for ¢ in cities with c.state = s.state
put_item cs in f.cities
strcpy (cs.city, c.city);
cs.altitude = c.altitude;
cs.population = c.population;
end_item;
end_for;
display f
displaying *
end_form;
end_for

}

The following code fragment creates a dynamic menu displaying
the six New England states plus an “Exit” option:

FOR_MENU M
strcpy (M.TITLE_TEXT, "Choose a state");
M.TITLE_LENGTH = strlen (M.TITLE_TEXT) ;
for (i = 0; 1 < 7; 1i++)
{
PUT_ITEM E IN M
strcpy (E.ENTREE_TEXT, state_list [i]);
E.ENTREE_LENGTH = 2;
E.ENTREE_VALUE = 1;
END_ITEM;
}
DISPLAY M;
return M.ENTREE_VALUE;
END_MENU

Troubleshooting See the Appendix for a discussion of errors and error handling.

4-72 GDML Statements, Commands, Declarations and Clauses

Put_item

See Also See the entries in this chapter for:
* case_menu
e display
e for_form

¢ for_item

GDML Statements, Commands, Declarations and Clauses 4-73

Put_Segment

Put_Segment

Function

Syntax

Options

Examples

4-74

The put_segment statement writes a portion of a blob field.

Before you can write a blob field, you must create it with a
create_blob statement.

put_segment blob-variable [on-error)
on-error::= on_error statement... end_error

blob-variable

A temporary name used for name recognition. It is associated
with individual segments in the field and is used much like a
context variable. You must have assigned the blob variable in
an earlier open_blob statement.

on_error
Specifies the action to be performed if an error occurs during
the put_segment operation.

statement
A host language or GDML statement. If you include more than
one statement in an on_error clause, you must separate them
using the host language convention.

end_error
Terminates the on_error clause.

The following statements create a record stream, create a blob
field, and write segments to the blob field:

store tour 1in tourism using
printf ("Enter state code: ");
gets (tour.state)
printf ("Enter zip code: ");
gets (tour.zip)
printf ("Enter city: ");
gets (tour.city)
create_blob b in tour.guidebook;
printf ("Enter new blurb one line at a time\n");
printf ("A line containing ’'-30-’ ends input");
gets (b.segment) ;
while (strcmp(b.segment, "-30-")) {

GDML Statements, Commands, Declarations and Clauses

Put_Segment

for (i=strlen(b.segment);i>=0;1i--){
if (b.segment([i] != * 7) {
b.segment [i+1]="\n";
b.segment [1+2]=0;
b.length = i+1;
i=0;
}
}

put_segment b;

gets (b.segment) ;

}
close_blob b;
end_store;

The following program copies the contents of a blob field from one
database to another:

/* program update_guide */
#include <stdio.h>

database atlas = filename ‘atlas.gdb’;
database guide = filename ‘coastal_guide.gdb’;

main()
{
start_transaction;
/* copy a blob to another database by retrieving it
in a blob for */
for t in atlas.tourism
store new in guide.tourism using
strcpy (new.state, t.state);
strcpy (new.city, t.city):
strcpy (new.zip, t.zip);
create_blob n_guide in new.guidebook;
for o_guide in t.guidebook
strcpy (n_guide.segment,
o_guide.segment) ;
n_guide.length = o_guide.length;
put_segment n_guide;
end_for;
close_blob n_guide;
end_store;
end_for;

GDML Statements, Commands, Declarations and Clauses 4-75

Put_Segment

commit ;

finish;

}
Troubleshooting See the Appendix for a discussion of errors and error handling.
See Also See also the entries in this chapter for:

* on_error
e open_blob

¢ close_blob

See the chapter on using blobs in the Programmer’s Guide.

4-76 GDML Statements, Commands, Declarations and Clauses

Ready

Function

Syntax

Options

Ready

The ready command opens one or more databases for access.
When it encounters a ready command, InterBase:

* Initializes itself internally. The initialization sets up data
structures and allocates dynamic memory.

¢ Looks at the file name of the database and determines if the
file is stored on the originating node (a local database) or on
another node (a remote database). InterBase provides trans-
parent access to remote databases.

* Opens the database file and looks at the header page.
Assuming the header page identifies the file as containing a
valid, unbroken database with the correct version of the on-
disk structure, InterBase permits further access. Otherwise,
it returns an error.

Depending on the options you set when preprocessing the pro-
gram with gpre, you may not have to issue a ready command to
access a database. By default, gpre generates a ready if one is
needed so the database is automatically readied the first time
your program refers to that database. However, if you specify the
manual option when you preprocess the program, gpre does not
generate a ready command (and start_transaction statement).
The advantage to using the manual option is that preprocessed
code is smaller and simpler.

You should close each database with a finish command when you
are done with it. This practice saves system resources.

ready (dbhandle-commalist | runtime-file)
[on-error]
dbhandle: := {database-handle | runtime-file
as database-handle}
runtime-file::= {database-filespec |
host-variable}
on-error ::= on_error statement... end_error
dbhandle

References either a database assigned a handle in a database
declaration or a database you specify with database-filespec

GDML Statements, Commands, Declarations and Clauses 4-77

Ready

and to which you assign a database handle. The database-
filespec must be a quoted file specification or a logical name
that resolves to a quoted file specification.

In the case of a handle assigned in a previous database declara-
tion, the database you ready for runtime access is the same as the
one you declared for compiletime access.

database-filespec
Specifies the database from which the preprocessor reads the
metadata. The database-filespec can be:

¢ Afilename enclosed in single () or double (”) quotation
marks, depending on your host language conventions.

* Alogical name that resolves to a quoted file specifica-
tion.

The file specification can contain the full pathname, including
the name of the node on which the database is stored. If you are
in a directory other than the one that contains the database
file, the file specification must include the pathname. If the da-
tabase is on another node, the filespec must include the node
name and pathname. You can define a link or logical name for
the database file.

File specifications for remote databases have the following
form.

Table 4-2. Remote Database Access

From To Syntax

VMS VMS via DECnet node-name::filespec
VMS ULTRIX via DECnet node-name::filespec
VMS non-VMS and non-ULTRIX node-name”Milespec
ULTRIX VMS via DECnet node-name::filespec
Apollo Apollo //node-name/filespec
Everything Else Whatever is left node-name:filespec

4-78 GDML Statements, Commands, Declarations and Clauses

Example

Ready

Be sure that what follows the node name and punctuation is a
valid file specification on the target system; use brackets,
slashes, and spaces as appropriate.

host-variable
Specifies a host language variable to accept the location of a da-
tabase at runtime.

runtime-file
Readies the named database file. You can use this option if
your program accesses only one database.

The file specification can contain the full pathname, including
the name of the node on which the database is stored. See the
earlier discussion of database-filespec for information about ac-
cessing remote databases.

on-error
Specifies the action to be performed if an error occurs during
the ready operation.

The following sequence declares a database and readies it:

/* program atlas */
database atlas = filename ‘atlas.gdb’;

main()

{

ready atlas;

start_transaction;
U

rollback;

finish atlas;

}

Another option is to assign the database handle in the ready
command. For example, the following sequence declares a compi-
letime database and readies different databases for runtime
access:

/* program ski_areas */
#include <stdio.h>

database atlas = filename ‘atlas.gdb’;

GDML Statements, Commands, Declarations and Clauses 4-79

Ready

charfilename (407 ;
intopen_database = 0;

main ()
{
while (!open_database) {
open_database = 1;
printf ("Please enter db pathname (’'quit’ to

exit): ");
gets (filename);
if (!strcmp(filename, "quit")) {
printf ("Toodles, kid!\n");
return;

}
ready filename as atlas
on_error
printf ("Error during database open.
Status follows.\n");
gds_Sprint_status (gds_Sstatus);
printf("\n");
open_database = 0;
end_error;
}
/* do work */
finish;

}
Troubleshooting See the Appendix for a discussion of errors and error handling.
See Also See the entries in this chapter for:

e on_error
¢ database

e finish

4-80 GDML Statements, Commands, Declarations and Clauses

Release_Requests

Release_Requests

Function

Syntax

Options

The release_requests command frees the memory used by the
execution tree of all compiled requests for a database and sets the
request handles to null.

In most programs, the program logic involves loops that can re-
use requests. Therefore, InterBase saves requests in their com-
piled and optimized form. However, if your program finishes and
re-readies databases, requests must be re-compiled. The finish
commit automatically marks requests from that module as obso-
lete and ensures they are re-compiled when, and if, they are re-
used.

Large programs consisting of separately compiled modules some-
times have requests in modules that do not contain a finish com-
mand. In those cases, you can use the release_requests
command to release resources and ensure re-compilation. You
must include the release_requests command in one externally
callable subroutine in each module that contains a database
request. Before you execute a finish command, call each of the
“release” subroutines to release resources allocated in its module.

release_requests [[for]] database-handle]
[[on-error]
on-error::= on_error statement... end_error

database-handle
Specifies the database whose requests you want to release. If
you do not specify a database handle, InterBase releases
requests associated with all open databases.

on_error
Specifies the action to be performed if an error occurs during
the release operation.

statement
A host language or GDML statement. If you include more than
one statement in an on_error clause, you must separate them
using the host language convention.

GDML Statements, Commands, Declarations and Clauses 4-81

Release_Requests

end_error
Terminates the on_error clause.

Example The following program calls one external routine to perform an
action and another to release resources associated with the
request:

/* program driver */
/* file worker.e */
#include <stdio.h>

database atlas = filename "atlas.gdb";

worker ()

{
char quit [4];

strcpy (quit, "no");
while (strcmp (guit, "yes")) {
ready atlas;
worker () ;
worker_release();
finish;
printf ("Done yet (’yes’ to stop): ");
gets (quit);
}

/* The following module is called by the preceding
program: */

/* file worker_1l.e */
database atlas = EXTERN filename ‘atlas.gdb’;
worker_release()
{
release_requests;
}
worker ()
{
int 1i;
i = 0;

start_transaction;
for s in states

4-82 GDML Statements, Commands, Declarations and Clauses

Release_Requests

i++;
end_for;
commit;
printf ("There are %d states.\n", 1i);

}
Troubleshooting See the Appendix for a discussion of errors and error handling.

See Also See the entry for finish in this chapter.

GDML Statements, Commands, Declarations and Clauses 4-83

Request Options

Request Options

Function

Syntax

Options

Examples

4-84

The request-option is an optional GDML clause that lets you spec-
ify the instantiation (recursion) level of a request, the transaction
handle for a request, or the request handle for a request.

SQL does not support recursion. If you are using SQL statements
in your program, do not involve any SQL operations in a recur-
sive request.

request-option ::= (option-commalist)

option ::= {level integer-expression |
transaction_handle host-variable
request_handle host-variable

level integer-expression
Specifies the instantiation level of a request.

transaction_handle host-variable
Specifies a transaction handle for the transaction in which the
statement executes.

request_handle host-variable
Specifies a request handle for the request in which the state-
ment executes.

The following program produces a horizontal organization chart
with the president at the top left and the rest of the company
moving to the right:

/* program map */
database db = filename ’‘emp.gdb’;

based on employees.badge badge_type;
int level;
char blanks[] = " ";

main ()

{
ready;
start_transaction;

GDML Statements, Commands, Declarations and Clauses

Request Options

printf (" Employee Roster\n\n");
for e in employees with e.supervisor missing
printf ("%s %s\n", e.first_name,
e.last_name) ;
print_next (0, e.badge);
end_for;
commit ;
finish;
}
print_next (lev, super)
int lev;
based on employees.badge super;

{

int offset;

for (level lev) e in employees with
€.supervisor = super

offset = (lev) * 4;
printf ("%*s%s %s\n", offset,
blanks,

e.first_name,
e.last_name) ;
print_next (lev+1l, e.badge);
end_for;

}

The following program starts a named consistency mode trans-
action to update the BADGE relation:

/* program get_badge */
database emp = filename ’‘emp.gdb’;

int get_badge_tr;
long get_badge;

main ()
{
get_badge_tr = 0;
start_transaction get_badge_tr
consistency read_write reserving
badge_num for protected write;
for (transaction_handle get_badge_tr) b in
badge_num

GDML Statements, Commands, Declarations and Clauses 4-85

Request Options

get_badge = b.badge;
modify b using
b.badge++;
end_modify;
end_for;
commit get_badge_tr;

}

The following program hires everybody’s offspring and assigns
them new badge numbers. Note that each request (that is, each
for and store) must use the same request options, even though
they are nested. The modify statement is not a separate request
and does not require a transaction handle. The outer for state-
ment is in the default transaction. It does not read the newly
stored records and start prompting for employee grandchildren:

/* program nested_for */
database db = filename ’‘emp.gdb’;

int gds_S$handle = 0;
char check[] = "y ";
int update_tr = 0;

main ()
{

ready;

start_transaction update_tr consistency read_write
reserving badge_num, employees for
protected write;

start_transaction;

for e in employees
printf ("Should we hire %s %s’s kid? ",
e.first_name, e.last_name);
gets (check);
if ((check[0] == 'y’) || (check[0] == 'Y")) {
for (transaction_handle update_tr) b in
badge_num
store (transaction_handle update_tr) n_e
in employees using
printf ("What’s the kid‘s first name?");

4-86 GDML Statements, Commands, Declarations and Clauses

Troubleshooting

See Also

gets (n_e.first_name);

strcpy (n_e.last_name, e.last_name);

Request Options

printf ("What’s the kid’s birthdate?");

gets (n_e.birth_date.char[20]);
n_e.badge = b.badge + 1;
strcpy (n_e.department, "NEP");

n_e.supervisor = 13;
end_store;
modify b using

b.badge++;
end_modify;

end_for;
}
end_for;
commit update_tr;
commit;
finish;

}

See the Appendix for a discussion of errors and error handling.

See the entries in this chapter for:

s for
* start_stream

* store

GDML Statements, Commands, Declarations and Clauses

4-87

Rollback

Rollback

Function

Syntax

Options

Example

4-88

The rollback command restores the database to its state prior to
the current transaction. It affects all databases in the transac-
tion, discarding all modified buffers and closing any open record
streams.

The rollback command ends a transaction and undoes all
changes made to the database since the most recent start_trans-
action command or since the start of the transaction specified by
the transaction handle.

rollback [transaction-handle] [on-error]
on-error::= on_error statement... end_error

transaction-handle
Specifies the transaction you want to roll back. If the transac-
tion you want to roll back has a transaction handle associated
with it, you must use that handle when you roll back the trans-
action.

If you do not specify a transaction handle on a rollback com-
mand, InterBase rolls back the “default” transaction. The de-
fault transaction is what gets started when you use a
start_transaction command without a handle.

on-error
Specifies the action to be performed if an error occurs during
the rollback operation.

The following statements modify the BADGE relation, but roll-
back the transaction if there is an error:

for (transaction_handle get_badge_tr) b in
badge_num
get_badge = b.badge;
modify b using
b.badge++;
end_modify
on_error
if (gds_S$status [1] == gds_s$deadlock)
get_badge = 0;

GDML Statements, Commands, Declarations and Clauses

else
get_badge = -1;
rollback get_badge_tr;
return;
end_error;
end_for;

Troubleshooting A rollback command cannot fail.

See the entries in this chapter for:

* start_transaction
* on_error

GDML Statements, Commands, Declarations and Clauses

Rollback

4-89

Save

Save

Function

Syntax

Examples

4-90

The save statement writes data to the database and makes the
changes visible to other users while retaining the context of the
current transaction. You can save changes without having to end
a transaction.

The save statement flushes all modified buffers, but keeps open
any record streams that are currently open.

save [transaction-handle commalist] [on-error]
on-error::= Oon_error statement...end_error

transaction-handle

Specifies the transaction you want to save. If the transaction
you want to save has a transaction handle associated with it,
you must use that handle when you save the transaction. If you
do not specify a transaction handle on a save statement, Inter-
Base saves the default transaction, the transaction that Inter-
Base starts when you use a start_transaction command
without a handle.

on-error
Specifies the action to be performed if an error occurs during
the save operation.

In the following C example, a record is saved as soon as it is mod-
ified:

database db = filename "bugs.gdb";

main ()

{

char buffer [25]

ready;

start_transaction;

for b in bug_assignments
printf ("%s\t%s\t%d\n",b.engineer,
b.date_assigned.char[11], b.bug_no);
printf ("enter a new name to reassign bug:");
gets (buffer);
if (*buffer)

modify b using

GDML Statements, Commands, Declarations and Clauses

Save

strcpy (b.engineer,buffer);
end_modify
save;
end_for;
commit;
finish;

Troubleshooting See the Appendix for the standard gpre error messages.
See Also See the entries in the this chapter for:

* start_transaction
¢ transaction-handle

* on_error

GDML Statements, Commands, Declarations and Clauses 4-91

Start_Stream

Start_Stream

Function

Syntax

Options

4-92

The start_stream statement declares and opens a record
stream.

You can start a stream with the for statement or with the
start_stream statement. The for statement is generally
recommended. However, you may want to use a start_stream
statement if you are processing:

¢ Several streams in parallel.

¢ A stream until some condition is met, and then exiting from
the stream.

start_stream [request-option] stream-name
using rse [on-error]
statement. ..

end_stream stream-name [on-error)

on-error::= on_error statement... end_error

request-option
Specifies a transaction handle and/or request handle that
determine the transaction and/or request in which the start_-
stream statement executes.

stream-name
Names the stream. The name can contain up to 31 alphanu-
meric characters, dollar signs ($), and underscores (_).

The context of the stream name is the whole module that con-
tains the start_stream statement, so you cannot re-use a
stream name in the same module.

rse
Specifies the record selection criteria used to create the record
stream.

on-error
Specifies the action to be performed if an error occurs when you
start the stream or when it terminates. Errors on the end_-
stream generally occur only in extreme cases, such as a net-
work partition while the stream is still open.

GDML Statements, Commands, Declarations and Clauses

Example

Start_Stream

statement
Specifies GDML or host language statements to be executed
within the stream. The statements you include are subject to
the following rules. If you:

* Include more than one statement, you must separate
them using the host language convention.

* Use other GDML statements while the stream is open,
those statements can use only the context variables
declared in the GDML block, in outer blocks, or in inner
blocks. You can re-use the context variables outside
those blocks.

The following program illustrates the use of the start_stream
statement in a loop that may be terminated by user interaction:

/* program map */
database db = filename ’‘atlas.gdb’;

int end_of_stream;
char genugl[] = "y ";

main()
{
ready;
start_transaction;
start_stream geodata using c¢ in cities
sorted by c.latitude, c.longitude;
end_of_stream = 0;
while (!end_of_stream) {
fetch geodata
at end end_of_stream = 1;
end_fetch;
1f (!end_of_stream) {
printf ("%$s\t%s\t%s\t%s\t%s\n",
c.latitude, c.longitude,
c.altitude, c.city, c.state);
printf ("Seen enough? (Y/N) ");
gets (genug) ;
if((genugl[0] == "Y'’

) || (genug (0] == "y’))
end_of_stream = 1;

GDML Statements, Commands, Declarations and Clauses 4-93

Start_Stream

end_stream geodata;
commit;
finish;

}

Troubleshooting See the Appendix for a discussion of errors and error handling.
See Also See the entries in this chapter for:

* request-option
* on_error

See also the entry in Chapter 3 for record selection expression.

4-94 GDML Statements, Commands, Declarations and Clauses

Start_Transaction

Start_Transaction

Function

Syntax

Options

The start_transaction statement begins a group of statements
that are executed as one logical unit.

A process can start any number of independent transactions.
This capability facilitates the development of server processes
and allows system service routines to use databases without
affecting user-level database activity.

start_transaction [transaction-handle]
[concurrency | consistency]
[read_write | read_only |
[wait | nowait}
[reserving-clause]

[on-error]
reserving-clause: := reserving
reserved-relation-commalist
reserved-relation::= [database-handle.]relation

for [protected]
{read | write}
on-error::= on_error statement...end_error

transaction-handle
Declares a name that you can use when you have to reference
multiple transactions in a program.

If you start a transaction without specifying a transaction han-
dle, gpre starts the “default transaction.” There is one default
transaction per process. When gpre encounters a subsequent
statement without a transaction handle, it generates a test for
the default handle. If there is no default transaction, gpre
starts one. In any case, gpre applies statements without trans-
action handles to the default transaction.

concurrency (default)
The concurrency default provides high throughput and con-
currency with generally satisfactory consistency. No transac-
tion sees any data written by another active transaction.

GDML Statements, Commands, Declarations and Clauses 4-95

Start_Transaction

4-96

consistency
The consistency option provides a high level of database con-
sistency that guarantees that all transactions are serializable
(that is, having the same effect on the database as if all trans-
actions were run sequentially in some order) at the expense of
concurrency.

To ensure a deadlock-free transaction, use the consistency op-
tion and reserve the relations required by the transaction for
read or write depending on the mode in which they will be
used. However, this option does not allow concurrent write ac-
cess to the reserved relations.

read_write (default)

read_only
The default intention of a transaction is that it will read and
write data. You may choose to declare a transaction read_only
to document its behavior or as a check on program logic.

wait (default)

nowait
The default action if your program encounters a locked object
is to wait until the lock goes away. The nowait option produces
a lock_conflict error whenever a program encounters a locked
object. The nowait option is not recommended because it re-
quires more error handling in a program and can lead to unnec-
essary rollbacks.

reserving
Lists the relations to be used in the transaction. InterBase
locks those relations for your access if you choose consistency
mode. You must list each relation that the transaction will
“touch” (that is, if it is used at all, in any capacity). List rela-
tions individually. You can specify different relation locking
criteria for each. However, if you choose read_only for the
transaction (see above), you cannot reserve a relation for
write.

read|write
If you have a concurrency mode transaction, you can option-
ally reserve a relation for protected write. This mode allows
other users to read the relation, but prevents them from writ-
ing to it. By default, concurrency mode transactions are re-
served for shared access, an access mode that all users write to
the relation.

GDML Statements, Commands, Declarations and Clauses

Examples

Start_Transaction

The protected write reserving option is the default for con-
sistency mode transactions.

To ensure a deadlock-free transaction, use the consistency op-
tion and reserve the relations required by the transaction for
read or write depending on the mode in which they will be
used.

dbhandle
References the handle assigned a database in a database dec-
laration

relation
Specifies the relation to be used in the reserving clause

on-error
Specifies the action to be performed if an error occurs when you
start the transaction.

The following statement starts a transaction that will become the
default transaction because there is no transaction handle:

start_transaction;

The following statement starts a transaction and assigns a trans-
action handle:

/* program zip_update */
database db = filename ‘atlas.gdb’;

int zip = 0;

main ()

{

start_transaction zip;
U

commit zip;

finish;

}

The following statement starts a transaction with a reserving
clause:

/* program zip_update */
database db = filename ’atlas.gdb’;

int zip = 0;

GDML Statements, Commands, Declarations and Clauses 4-97

Start_Transaction

main()
{
start_transaction zip
read_write consistency
reserving catalog.catalog_items for write;

}
Troubleshooting See the Appendix for a discussion of errors and error handling.
See Also See the entries in this chapter for:

* prepare
e commit
¢ rollback

* on_error

4-98 GDML Statements, Commands, Declarations and Clauses

Store

Function

Syntax

Options

Store

The store statement inserts a new record into a relation.

You cannot store records into views formed from more than a sin-

gle relation. Rather, you must store them into the source
relations.

store [request-option] relation-clause using

statement
end_store [on-error]
on-errror ::= Oon_error statement... end_error

request-option

Specifies a transaction handle and/or request handle that de-
termine the transaction and/or request in which the store
statement executes.

If you nest a store statement inside a for loop and use an
explicit transaction handle on the for statement, you must also
use the transaction handle on the store statement. Otherwise,
the store statement will be executed inside the default trans-
action.

relation-clause
Specifies the relation into which the new record is to be stored.
See the entry for RSE in the previous chapter for more informa-
tion about the relation-clause.

on-error
Specifies the action to be performed if an error occurs during
the store operation.

statement
Specifies the action to be taken in storing the record(s). The
statements are typically assignments. If you include more than
one statement, you must separate them using the host lan-
guage convention.

GDML Statements, Commands, Declarations and Clauses 4-99

Store

Examples The following statement stores a new record in SKI_AREAS:

store ski in ski_areas using

printf ("Name: ");

gets (ski.name);

printf ("City: ");

gets (ski.city):

printf ("State: ");

gets (ski.state);

printf ("Type: ");

gets (ski.type);
end_store;

The following statements use an outer for loop to create a record
stream from which a store statement takes some values, host
variables supply some values, and unreferenced fields are set to
missing:

for oldcity in cities with oldcity.city_name =
hostvarl
store newcity in cities using
strcpy (newcity.city, hostvar2);
strcpy (newcity.state, oldcity.state);
newcity.population =
oldcity.population * hostvar3;
newcity.altitude = oldcity.altitude;
end_store;
end_for;

The following program hires everybody’s offspring and assigns
them new badge numbers. Each request (that is, each for and
store) must use the same request options, even though they are
nested. The modify statement is not a separate request and does
not require a transaction handle. The outer for statement is in
the default transaction. It does not read the newly stored records
and start prompting for employee grandchildren:

/* program nested_for */
database db = filename 'emp.gdb’;

int update_tr = 0;
char check [] ="y ";

main ()

4-100 GDML Statements, Commands, Declarations and Clauses

Troubleshooting

Store

{

ready;

start_transaction update_tr consistency read_write
reserving badge_num, employees for protected

write;

start_transaction;

for e in employees
printf ("Should we hire %s %s’s child ? ",
e.first_name, e.last_name);
gets (check);
if ((check[0] == 'y’) || (check([0] == 'Y"))
{
for (transaction_handle update_tr) b in
badge_num
store (transaction_handle update_tr) n_e
in employees using
printf ("What’s the child’s first
name? ");
gets (n_e.first_name);
strcpy (n_e.last_name, e.last_name);
printf("What’'s the child’s date of
birth? ");
gets (n_e.birth_date.char[20]);
n_e.badge = b.badge + 1;
strcpy (n_e.department, "NEP");
n_e.supervisor = 13;
end_store;
modify b using
b.badge = b.badge + 1;
end_modify;
end_for;
}
end_for;
commit update_tr;
commit;
finish;

}

See the Appendix for a discussion of errors and error handling.

GDML Statements, Commands, Declarations and Clauses 4-101

Store

See Also See the entries in this chapter for:

* request option

* on_error

See the entry in Chapter 3 for record selection expression.

4-102 GDML Statements, Commands, Declarations and Clauses

Store Blob

Function

Store Blob

The store blob statement stores data into a blob field.

The storage of blob fields must occur in the larger context of
whole record storage. To store a record that contains a blob field:

e Use the “other” store statement to store non-blob fields with
host language assignments.

¢ When you get to the blob field, construct a loop to solicit and
accept blob data or to retrieve data from another blob field or
text file.

¢ Use the store blob statement to assign data to the blob field.

Note

When you store or modify a blob, you cannot directly as-
sign data to that blob. You must use the following syn-
tax:

<blob field name> = edit

Syntax

store blob-variable in dbfield-expression
[on-error]

on-error ::= on_error statement...end_error

Options

For some guidance on the best approach to processing blobs, see
the entries in this chapter for for blob and open_blob.

blob-variable
A temporary name used for name recognition. It is associated
with individual segments in the field and is used much like a
context variable.

dbfield-expression
Identifies a field that contains blob data.

on-error
Specifies the action to be performed if an error occurs during
the store operation.

GDML Statements, Commands, Declarations and Clauses 4-103

Store Blob

statement
Any valid host language or GDML statement. Use host lan-
guage punctuation to terminate each statement.

Example The following statements store a record in CATALOG_ITEMS:

store cb in catalog_blurb using
strcpy (cb.item_number, "PRO10");
strcpy (cb.date_modified.char([11], "today");
printf ("Enter new blurb one line at a time
with "Z to end input");
store blob in cb.blurb
while (gets (blob.segment) !'= 0) {
blob.length = strlen(blob.segment) ;
put_segment blob;
}
end_store;
end_store;

Troubleshooting See the Appendix for a discussion of errors and error handling.
See Also See the entries in this chapter for:

* on_error

* store

* modify
¢ for

¢ for blob

See also the entry in Chapter 3 for value expression.

4-104 GDML Statements, Commands, Declarations and Clauses

Transaction Handle

Transaction Handle

Function

Syntax

Options

The transaction-handle clause specifies the name of a transac-
tion in several GDML statements.

If you do not start a transaction with the start_transaction
statement, choosing instead to let gpre start transactions as
needed, you can still specify the transaction under which you
want a statement to be executed by declaring a transaction han-
dle in the request-option clause of the for, store, and start_-
stream statements. If that transaction does not exist, gpre
starts it.

host-variable

host-variable
A host language program variable that serves as the transac-
tion handle.

e For Ada, the transaction handle must be declared as
INTERBASE.TRANSACTION_HANDLE and initial-
ized to zero.

¢ For BASIC, the transaction handle must be declared as
LONG and set to 0.

e For C programs, the transaction handle must be
declared as a long integer initialized to null (0).

¢ For COBOL, the transaction handle must be declared
as PIC S(9) COMP.

e For FORTRAN programs, the transaction handle must
be declared as INTEGER*4 set to 0.

* For Pascal programs, the transaction handle must be
explicitly declared in the program as a pointer to any
type and initialized to nil before use. The variable
gds_$handle is pre-declared as a type for Pascal.

¢ For PL/I, the transaction handle must be declared as a point-
er and initialized to NULLJ().

GDML Statements, Commands, Declarations and Clauses 4-105

Transaction Handle

Example

Troubleshooting

See Also

4-106

The following Pascal example starts two named transactions,
performs some unspecified data manipulation in each, then
writes the changes for only the specified transaction to the
database. Then it commits the other transaction:

start_transaction store_resort;
start_transaction drop_resort;

4

for (transaction_handle store_resort)
U

for (transaction_handle drop_resort)
U

commit store_resort;
U

commit drop_resort;
See the Appendix for a discussion of errors and error handling.
See the entries in this chapter for:

* commit

* prepare

e rollback

e start_transaction
¢ for

e store

* start_stream

* request-option

GDML Statements, Commands, Declarations and Clauses

Chapter 5
SQL Expressions

This chapter contains entries for SQL expressions.

Overview

InterBase uses the following SQL expressions

¢ Predicate, which specifies a condition that is applied to a record or records in a ta-
ble that evaluates to true, false or unknown

* Scalar expression, which is a symbol or string of symbols used in predicates to cal-
culate a value

¢ Select expression, which specifies the search and delivery conditions for record re-
trieval

SQL Expressions 5-1

Predicate

Predicate

Function

Syntax

The predicate specifies a condition that is applied to a record or
records in a table that evaluates to true, false or unknown. It fol-
lows the where clause in the delete and update statements and
the select expression.

predicate::= {condition | condition and predicate
| condition or predicate | not predicate}

condition::= {compare-condition|
between-condition|like-condition|in-condition]|
exlists-conditionl| (predicate)}

The following sections describe the five options of the predicate:
* Compare condition

e Between condition

¢ Like condition

¢ In condition

e Exists condition

Compare Condition

Function

Syntax

5-2

The compare condition describes the characteristics of a single
scalar expression (for example, a missing or null value) or the
relationship between two scalar expressions (for example, x is
greater than y).

{scalar-expression comparison-operator
scalar-expression|

scalar-expression comparison-operator
(column-select-expression)

| scalar-expression is [not]null}

comparison-operator::= {=|"=l<|"<|<=|>|">|>=}

column-select-expression ::= select [distinct]

SQL Expressions

Predicate

Options scalar-expression
A scalar expression is a field reference, an alphanumeric lit-
eral, a numeric literal or an arithmetic expression.

from-clause
Specifies the table name or table name’s alias from which
records are selected.

where-clause
Specifies search conditions or a combination of conditions.

Example The following cursor retrieves all fields from CITIES records for
which the POPULATION field is not missing:

exec sqgl
declare inhabited cursor for
select city, state, population
from cities
where population is not null;

Between Condition

Function The between condition specifies an inclusive range of values to
match.
Syntax [database-field | scalar-expression] [not]

between scalar-expression-1 and scalar-
expression-2

Options database-field
Specifies the field containing the values matching the inclusive
range.

scalar-expression
A scalar expression is a field reference, an alphanumeric lit-
eral, a numeric literal or an arithmetic expression.

Example The following cursor retrieves the CITY and STATE fields from
cities with populations between 100000 and 125000:

exec sgl
declare midsized_cities cursor for
select city, state from cities
where population between 100000 and 125000;

SQL Expressions 5-3

Predicate

Like Condition

Function The like condition matches a string with the whole or part of a
field value. The test is case-sensitive.

Syntax database-field [not] like scalar-expression
[escape scalar expression-2]

Options database-field
Specifies the field containing the values that are matched to
the scalar expression.

scalar-expression
The scalar expression represents an alphanumeric value. It
may be a literal, a host language variable or a dataase field. It
can contain wildcard characters. Wildcard characters are:

Character Matches

Underscore (_) A single character

Percent sign (%) Any sequence of characters, including none.

escape
Allows you to search for the predefined wildcard characters by
instructing InterBase to treat the character following
escapeas itself.

scalar expression-2
Represents a single character. It can be a literal, a host lan-
guage variable, or a database field.

Examples The following cursor retrieves the CAPITAL and STATE from
STATES records in which the CAPITAL field contains the string
“ville” preceded or followed by any number of characters:

exec sqgl
declare ville cursor for
select capital, state
from states
where capital like '%ville%’;

5-4 SQL Expressions

Predicate

The following example uses the optional escape clause:

exec sqgl
declare percent.cities cursor for
select city, state from cities
where city like "%c%%" escape "c"

In Condition

Function The in condition lists a set of scalar expressions as possible
values.
Syntax scalar-expression [not] in (set-of-scalars)
set-of-scalars::= {scalar-expression-commalist]|

column-select-expression}

column-select-expression ::= select [distinct]
scalar-expression from-clause|[where-clause]

Options scalar expression
A database field, host language variable, quoted string or
numeric literal.

from-clause
Specifies the table name or table name’s alias from which
records are selected.

where-clause
Specifies serach conditions or combination of conditions.

Example The following cursor selects records from the CITIES table with
city names that are in the specified set:

exec sqgl
declare favorite_cities cursor for
select city, state, population
from cities
where city in (’Boston’, ‘Providence’,
"Albany’) ;

SQL Expressions 5-5

Predicate

Exists Condition

Function

Syntax

Options

Example

Troubleshooting

See Also

The exists condition tests for the existence of at least one quali-
fying record identified by the select subquery.

Because the exists condition uses the parenthesized select
statement to retrieve a record for comparison purposes, it
requires only wildcard (*) field selection.

A predicate containing an exists condition is true if the set of
records specified by select-expression includes at least one record.
If you add not, the predicate is true if there are no records that
satisfy the subquery.

[not] exists (select * where-clause)

where-clause
Specifies search conditions or a combination of conditions.

The following cursor tests to see if at least one record that satis-
fies the condition exists:

exec sql declare exist_test cursor for
select s.capitol, s.state from states s where
exists (select * from ski_areas sk where
sk.state = s.state);

See Appendix A for a discussion of error handling.
See the entries in this chapter for:

* select expression
* scalar expression

See also the entries in Chapter 4 for:

o delete
e update

SQL Expressions

Scalar

Function

Syntax

Options

Scalar

The scalar expression is a symbol or string of symbols used in
predicates to calculate a value. InterBase uses the result of the
expression when executing the statement in which the expres-
sion appears.

You can add (+), subtract (-), multiply (*), and divide (/) scalar
expressions. Arithmetic operations are evaluated in the following
order: addition, subtraction, multiplication, division. You can use
parentheses to change the order of evaluation.

scalar-expression ::= [-]scalar-term
arithmetic-operator scalar-expression]

scalar-term ::= [-]scalar value
scalar-value ::= {field-expression|host-language
variable|constant-expression|

statistical functionl| (scalar-expression)

arithmetic-operator::= {+|-1*1/}

The following sections describe the four options of the scalar
expression:

¢ Field expression

¢ Constant expression

¢ Host language variable

e Statistical function

SQL Expressions 5-7

Scalar

Field Expression

Function

Syntax

Options

Examples

5-8

The field expression references a database field.

[table-name. lallas.]database-field]

table-name ::= [authorization_id.]
[database-handle.] {table-name|view-name}

database-handle
Specifies the name associated with a database. You establsih
the handle in a GDML database delcaration. You can also
assign the handle to a specific database in a GDML ready
statement.

The optional database handle is useful in multi-database appli-
cations in which databases are declared with the GDML data-
base declaration.

table-name.

view-name.

alias.
Specifies the table, view, or alias (synonym for a table or view)
in which the field is located. The alias is assigned to a table or
a view in a select-expression.

database-field
Specifies the field.

authorization_id
The user name of the owner of the table or view.

The following cursor retrieves fields from the CITIES record that
represents the city of Boston:

exec sqgl
declare legume_village cursor for
select city, state, altitude, latitude,

longitude
from cities
where city = ’'Boston’;

SQL Expressions

Scalar

The following cursor retrieves selected fields from CITIES with a
population greater than 1,000,000:

exec sql
declare big_cities cursor for
select city, state, population
from cities
where population > 1000000;

The following cursor joins records from the CITIES and STATES
tables:

exec sgl
declare city_states cursor for
select c.city, s.state_name
from states s, cities ¢
where s.state = c.state;

Constant Expression

Function

Syntax

Options

The constant expression specifies a string of ASCII digits inter-
preted as a number or a quoted string of ASCII characters.

{integer-stringldecimal-string| float-string|
ascii-string}

integer-string
Integer numeric strings are written as signed or unsigned dec-
imal integers without decimal points. For example, the follow-
ing are integers: -14, 0, 9, and +47.

decimal-string
Decimal numeric strings are written as signed or unsigned dec-
imal integers with decimal points. For example, the following
are decimal strings: -14.3, 0.021, 9.0, and +47.9.

float-string
Floating numeric strings are written in scientific notation (that
is, E-format). A number in scientific notation consists of a dec-
imal string mantissa, the letter E, and a signed integer expo-
nent such as 7.12E+7 or 7.12E-7.

SQL Expressions 5-9

Scalar

ascii-string
Character strings are written using ASCII printing characters
enclosed in single () or double (”) quotation marks. ASCII print-
ing characters are shown in the following table:

Characters Description

A—7 Uppercase alphabetic
a—z Lowercase alphabetic
0—9 Numerals
'1@#$%"&*()_-+="~[]{} | Special characters

Host Language Variable

Function You use host language variables whenever you:

e Retrieve data from a database. SQL moves the values of
database fields into host variables when it returns data.

e Solicit data from a user of your application. You need a host
variable to hold the value until you can pass it to InterBase.

» Specify search conditions. When you specify the conditions
for selecting records, you can either hard code a value or use
a host variable. For example, both where state = NH’ or where
state = :state are valid search conditions.

Syntax :host-language-variable

Example The following code fragment uses host language variables:

exec sqgl select state, state_name, capital into
:statecode, :name, :cap_city from states
where state = :input_variable;

5-10 SQL Expressions

Scalar

Statistical Function Expression

Function

Syntax

Options

Example

A statistical function is an expression that calculates a single
value from the values of a field in a table, view, or join.

{count (*) |count (distinct field-expression) |
sum ([distinct] field-expression) |

avg ([distinct] field-expression) |

min (field-expression) |lmax (field expression)}

Note

If you are programming Pascal, put a space between the
open parenthisis and the asterisk. Because Pascal uses
the sequence “(*” for comments, failure to leave a space
results in a compilation error.

count (*)
Returns the number of selected rows.

count [distinct]
Returns the number of unique values for the field. You must
specify distinct.

sum [distinct]
Returns the sum of values for a numeric field in all qualifying
records. InterBase ignores null values.

avg
Returns the average value for a numeric field in all qualifying
records. InterBase ignores null values.

max
Returns the largest value for the field.

min

Returns the smallest value for the field.

The following program returns a count of records in the CITIES

table, the maximum population, and the minimum population of
cities in that table:

exec sqgl
include sglca;

main()

SQL Expressions 5-11

Scalar

Troubleshooting

See Also

5-12

{

int counter;
int minpop,maxpop;

exec sqgl
select count (*), max (population), min
(population)
into :counter, :maxpop, :minpop
from cities;
printf ("Count: %d\n", counter);
printf ("Max Population: %d\n", maxpop);
printf ("Min Population: %d\n", minpop) ;

}

See Appendix A for a discussion of error handling.
See the entries in this chapter for:

* Select expression
* Predicate

SQL Expressions

Select

Function

Select Expression

The select expression specifies the search and delivery condi-
tions for record retrieval.

Syntax

select-clause [where-clause] [grouping-
clause] [having-clause]

Select Clause

The following sections describe the four options of the select
expression:

¢ Select clause

¢ Where clause

* Group By clause

* Having clause

Function The select clause lists the fields to be returned and the source
table or view.

Syntax select [distinct]{scalar-expression-commalist|*}
from from-item-commalist
from-item ::= table-name [alias]

Options distinct

Specifies only unique values are to be returned. InterBase con-
siders the values in the scalar-expression list and returns only
one set value for each group of records that meets the selection
criteria. It does not return duplicate values.

scalar-expression
Lists the fields to be selected. Scalar expressions can also be
host variables or constants.

*

The asterisk wildcard signifies all. In a select clause, using *
selects all fields from the source table. You can use an asterisk
in place of the full selection list. Although it is the preferred

SQL Expressions 5-13

Select Expression

Examples

5-14

form for the existential qualifier, exists, the wildcard is dis-
couraged for all other uses. Changes to the database (for exam-
ple, adding or reordering fields) cause the program to fail after
its next precompilation.

table-name
Specifies the source table.

alias
Used for name recognition, and is associated with a table. An
alias can contain up to 31 alphanumeric characters, dollar
signs ($), and underscores (_). However, it must start with an
alphabetic character.

The following considerations apply to case sensitivity in pro-
gramming languages:

e Forall languages except C, gpre is not sensitive to the case
of the alias. For example, it treats “B” and “b” as the same
character.

e For C programs, you can control the case sensitivity of the
alias with the either_case switch when you preprocess
your program.

The following cursor projects the SKI_AREAS table on the
STATE field:

exec sgl
declare ski_states cursor for
select distinct state from ski_areas;

The following example uses a join:

exec sgl

begin declare section;
exec sgl

end declare section;

main ()

char name [25], city [26], state [26];
long population, pop_ind;
char pop [12];
exec sgl
declare capitol_mayors cursor for

SQL Expressions

Select Expression

select m.mayor_name, s.capitol,
S.state_name, c.population from
mayors m, states s, cities c

where m.city = c.city and
m.state = c.state and
c.city = s.capitol and
c.state = s.state

order by s.state_name

exec sgl open capitol_mayors;

exec sgl fetch capitol_mayors into :name, :city,
:state, :population :pop_ind;

while (!SQLCODE)
{
if (pop_ind < 0)
sprintf (pop, "unknown");
else
sprintf (pop, "%d", population);
printf ("%$s is mayor of %s\n\t capitol of\
%s population %s\n",
name, city, state, pop);
exec sgl fetch capitol_mayors into :name, :city,
:state, :population :pop_ind;
}
if (SQLCODE != 100)
{
printf ("Unexpected SQLCODE %d\n", SQLCODE) ;
gds_Sprint_status (gds_S$status);
}
}

The following example uses a wildcard in place of the selection
list:

exec sgl select city from cities c¢
where exists c
select * from ski_areas
where city = c.city;

SQL Expressions 5-15

Select Expression

Where Clause

Function

The where clause specifies search conditions or combinations of
search conditions.

Often you want only a subset of the records in a table. When you
can describe the records you want by comparing values in the
records to values you specify, InterBase selects and returns only
those records you have described.

A statement, in which the choice is between the truth or falsity of
a proposition, is called a “Boolean test” and is expressed by a
predicate. See the entry for predicate in this chapter.

Syntax

where predicate

Example

5-16

The following cursor selects CITIES records for which the POP-
ULATION field is not missing:

exec sgl
declare inhabited cursor for
select city, state, population from cities
where population is not null;

The following cursor joins two tables on the STATE field for cities
whose population is not missing:

exec sqgl
declare inhabited_join cursor for

select c.city, s.state, c.population
from cities c, states s

where c.state = s.state

and c.population is not null;

The following program selects the smallest city in each state that
has at least two other cities with recorded population. A city qual-
ifies as largest and smallest if it is the only city. If there are two
cities, a city qualifies as the larger or smaller of the two:

exec sgl
include sqglca;

main ()

SQL Expressions

Select Expression

int pop;
char city [16];
char state_code [3];

exec sqgl
declare small_cities cursor for
select city, state, population
from cities cl
where cl.population = (
select min (population)
from cities c¢2
where c2.state = cl.state)
and 2 <= (
select count (*)
from cities c¢3
where cl.state = c3.state
and cl.city <> c3.city
and c3.population is not null)
order by cl.state;
exec sqgl
open small_cities;
exec sgl
fetch small_cities into :city, :state_code,

1Pop;

while (SQLCODE == 0)
{
printf ("The smallest city in %s is %s (pop:\
gd)\n",
state_code, city, pop);
exec sqgl
fetch small_cities into :city, :state_code,
:pop;
}

exec sgl

close small_cities;
exec sqgl

commit release;

SQL Expressions 5-17

Select Expression

Group By Clause

Function

Syntax
Option

Example

5-18

The group by clause partitions the results of the from clause or
where clause into control groups, each group containing

all rows with identical values for the fields in the grouping
clause’s field list. Aggregates in the select clause and having
clause are computed over each group. The select clause returns
one row for each group.

The aggregate operations are count (count), sum (sum), average
(avg), maximum (max), and minimum (min). See the entry for
scalar-expression in this chapter.

You can compute an aggregate value in the select-clause and the
having-clause of the select expression.

group by database-field-commalist

database-field
Specifies the field whose values you want to group. Each set of
values for these fields identifies a group.

The following example uses the group by clause. The cursor pro-
vides a total population by state of municipalities stored in the
CITIES table. It includes only those cities for which the latitude
and longitude information has been stored, which are located in
states whose names include the word “New”, and where the aver-
age population of cities in the state exceeds 200,000 people:

exec sqgl
declare total_pop cursor for
select sum (c.population), s.state_name
from cities c, states s
where s.state_name like ’%New%’ and
c.latitude is not null and
c.longitude is not null and
c.state = s.state
group by s.state
having avg (population) > 200000;

SQL Expressions

Select Expression

Having Clause

Function The having clause specifies search conditions for groups of
records. If you use the having clause, you must first specify a
group by-clause.

The having clause eliminates groups of records, while the where-
clause eliminates individual records. Generally speaking, you
can use subqueries to obtain the same results. The main advan-
tage to the use of this clause is brevity. However, some users may
find that a more verbose query with a subquery is easier to

understand.
Syntax having predicate
Example The following example uses the having clause. The cursor pro-

vides a total population by state of municipalities stored in the
CITIES table. It includes only those cities for which the latitude
and longitude information has been stored, which are located in
states whose names include the word “New”, and where the aver-
age population of cities in the state exceeds 200,000 people:

exec sqgl
declare total_pop cursor for
select sum (c.population), s.state_name

from cities ¢, states s

where s.state_name like ‘%New%’ and
c.latitude is not null and
c.longitude is not null and
c.state = s.state

group by s.state

having avg (population) > 200000;

Troubleshooting See Appendix A for a discussion of errors and error handling.
See Also See the entries in this chapter for:

¢ Predicate
® Scalar expression

* Select expression

SQL Expressions 5-19

Chapter 6
SQL Statements and Commands

This chapter contains entries for SQL statements.

Overview

InterBase supports the followng SQL statements for data definition and manipulation:
alter table close commit

create database create index create table

create view declare cursor declare table
declare statement delete describe

drop database drop index drop table

drop view execute execute immediate
fetch grant insert

open : prepare revoke

rollback select update

whenever

SQL Statements and Commands 6-1

Alter Table

Alter Table

Function

The alter table command drops a field from a table or adds a
field to a table. Unlike the “standard” SQL alter table command,
gpre lets you perform multiple drops and adds in one statement.

The alter table command is also supported in Dynamic SQL.

Syntax

alter table table-name operation-commalist
operation::= {add field-name datatypelnot null] |
drop field-name}

Options

Example

6-2

table-name
Specifies the table you want to change.

add
Adds a field to the specified table.

drop
Drops a field from the specified table.

field-name
Names the field you want to add or drop. If you add a field to a
table, the field name must be unique among all field names in
the table.

datatype
For a list of datatypes, see the entry in this chapter for create
table.

not null
Disallows the null or missing value as a valid value for this
field. You cannot disallow nulls when you add fields to a table
containing records.

The following statements alter tables by adding and dropping
fields:

exec sqgl
alter table states
add type_of_govt char(3),
add capital varchar(25);

SQL Statements and Commands

Troubleshooting

See Also

Alter Table

exec sqgl

alter table cities
drop population;

See the Appendix for a discussion of error handling. The follow-
ing values may be returned to SQLCODE:

SQLCODE < 0 indicates that the statement did not complete.
SQLCODE = 0 indicates success.

SQLCODE > 0 and < 100 indicates an informational message
or warning.

SQLCODE of 100 indicates that no qualifying records were
found.

Of these codes, the most likely to occur are -551 and -607:

-551 indicates that a privilege was denied by an access con-
trol list. Check the access control lists for the database to
make sure you have the right to manipulate database
entities.

-607 indicates that an attempt to update metadata failed.
Check secondary messages to find out why the attempt
failed.

See the discussion on defining metadata in the Programmer’s
Guide.

SQL Statements and Commands 6-3

Close

Close

Function

Syntax

Option

Example

6-4

The close statement terminates the specified cursor. InterBase
automatically releases resources associated with the closed cur-
sor. The SQL commit and rollback statements, and GDML’s
prepare statement automatically close all cursors.

Once you have closed a cursor, you cannot issue any more fetch
statements against that cursor unless you explicitly re-open it
with another open statement. If you close a cursor, records
selected for that cursor’s active set are no longer available to your
program. The active set of the cursor is said to be “undefined.”

close cursor-name

cursor-name
Specifies the cursor to close.

The following example declares a cursor, opens it, accesses
records in its active set, and then closes the cursor:

exec sgl

begin declare section;
exec sgl

end declare section;

main ()

{
char statecode[5];
char cityname[1l6];

exec sqgl
declare bigcities cursor for
select city, state from cities
where population > 1000000;

exec sqgl
open bigcities;
exec sgl
fetch bigcities into :cityname, :statecode;

SQL Statements and Commands

Troubleshooting

See Also

Close

printf ("\n");
while (!SQLCODE)
{ printf ("%s is in %s\n", cityname,
statecode) ;
exec sqgl
fetch bigcities into :cityname, :statecode;
}
exec sgl
close bigcities;
exec sqgl
rollback release;

}
InterBase returns errors if you:

¢ Fetch beyond the last record of an active set. InterBase auto-
matically closes the cursor and returns an end-of-file error.

* Try to close a cursor that has not been opened. InterBase
returns an error.

When you use the close statement with Dynamic SQL state-
ments, you may also receive SQLCODE -504.

The Appendix describes these and other Dynamic SQL errors.
See the entries in this chapter for:

* open
e commit
¢ rollback

SQL Statements and Commands 6-5

Commit

Commit

Function

Syntax

Options

Example

6-6

The commit command:

¢ Ends the current transaction
* Makes the transaction’s changes visible to other users
¢ Closes open cursors

¢ Does not affect the contents of host variables

The commit command is supported in Dynamic SQL.

commit [work] [release]

work
An optional word.

release
Breaks your program’s connection to the attached database,
thus making system resources available to other users. Do not
release a database until you are finished with it. The cost of
reopening the database is considerable.

The following program illustrates the use of multiple cursors in a
single transaction, terminated by a single commit that makes all
changes permanent:

exec sqgl
include sqglca;

#define TRUE 1
#define FALSE 0

main ()

{

char newcity[26];
char oldcity[26];
char state[5];
int first;

char option(4];

printf ("Enter the city name that'’s changing: ");

SQL Statements and Commands

Commit

gets(oldcity) ;
printf ("Enter the new city name: ");
gets (newcity) ;
printf ("Changing %s to %s in all tables\n",
oldcity, newcity);
exec sqgl
declare cities_cursor cursor for
select state from cities

where city = :o0ldcity
for update of city;
exec sqgl

declare tourism_cursor cursor for
select state from tourism

where city = :o0ldcity
for update of city;
exec sqgl

declare ski_areas_cursor cursor for
select state from ski_areas

where city = :oldcity

for update of city;
exec sgl

open ski_areas_cursor;
exec sgl

open tourism_cursor;
exec sqgl

open cities_cursor;
first = TRUE;

while (SQLCODE == 0)
{
if (!first)
{
printf ("Change %s, %s in cities? ",
oldcity, state);
gets (option) ;
if (option([0] == 'y')
exec sgl update cities
set city = :newcity
where current of cities_cursor;
}
exec sqgl
fetch cities_cursor into :state;
first = FALSE;

SQL Statements and Commands 6-7

Commit

i
SQLCODE = 0;
first = TRUE;
while (SQLCODE == 0)
{
if (!first)
{
printf ("Change %s, %s in tourism? ",
oldcity, state);
gets (option);

if (option([0] == 'v’)
exec sqgl

update tourism

set city = :newcity

where current of tourism_cursor;
}
exec sqgl
fetch tourism_cursor into :state;
first = FALSE;
}
SQLCODE = 0;
first = TRUE;
while (SQLCODE == 0)
{
if (!first)
{
printf ("Change %s, %s in ski areas? ",
oldcity, state);
gets (option) ;

if (option[0] == ‘'y')
exec sqgl
update ski_areas
set city = :newcity

where current of ski_areas_cursor;

exec sqgl
fetch ski_areas_cursor into :state;
first = FALSE;
}
exec sqgl
close ski_areas_cursor;
exec sgl
close tourism_cursor;

6-8 SQL Statements and Commands

Troubleshooting

See Also

Commit

exec sqgl

close cities_cursor;
exec sqgl

commit release

}

See the the Appendix for a discussion of error handling. The fol-
lowing values may be returned to SQLCODE:

* SQLCODE < 0 indicates that the statement did not complete.
¢ SQLCODE = 0 indicates success.

e SQLCODE > 0 and < 100 indicates an informational message
or warning.

e SQLCODE = 100 indicates that no qualifying records were
found.

See the entry in this chapter for rollback.

SQL Statements and Commands 6-9

Create Database

Create Database

Function

Syntax

Options

The create database command creates a database and its sys-
tem tables.

create database gquoted-filespec

[pagesize=integer]

quoted-filespec
Specifies the database file. It must be a valid file specification
enclosed in single () or double (") quotation marks. If the shell
you regularly use is case-sensitive, make sure that you always
reference the database file exactly as it is spelled out in the
create database command.

The file specification can contain the full pathname to another
node in the network. File specifications for remote databases
have the following form:

From

To Syntax

VMS

VMS via DECnet node-name::filespec

VMS

ULTRIX via DECnet node-name::filespec

VMS

non-VMS and non-ULTRIX node-name”Milespec

ULTRIX

VMS via DECnet node-name::filespec

Apollo

Apollo //node-name/filespec

Everything Else | Whatever is left node-name:filespec

pagesize=integer

Specifies a page size to override the default page size of 1024
bytes. You can create databases with page sizes of 1024, 2048,
4096, and 8192 bytes. The advantage of a larger page size is
that it allows a more shallow “tree” structure in the index. Each
index bucket is one page long, so longer pages mean larger
buckets and fewer levels in the index hierarchy. If you will have
more than 50,000 records in any one table, you should use a
page size of 2048 rather than the default.

SQL Statements and Commands

Example

Troubleshooting

See Also

Create Database

The following statement creates a database in the current
directory:

exec sqgl
create database ’'employees.gdb’;

See the Appendix for a discussion of error handling. The follow-
ing values may be returned to SQLCODE:

¢ SQLCODE < 0 indicates that the statement did not
complete.
e SQLCODE = 0 indicates success.

e SQLCODE > 0 and < 100 indicates an informational message
or warning.

Of these codes, the most likely to occur is -607:

* —607 indicates that an attempt to update metadata failed.
Check secondary messages to find out why the attempt
failed.

For more information about creating a database and for other
database file options, see the chapter on creating a database in
the Data Definition Guide.

For more information about SQL metadata operations, see the
Programmer’s Guide.

See also the entries in this chapter for:

e create table
¢ create index

* create view

SQL Statements and Commands 6-11

Create Index

Create Index

Function

Syntax

Options

Example

6-12

The create index command defines an index for a table.

This command is also supported in Dynamic SQL.

create [unique] [ascending|descending] index
index-name on table-name(field-name-commalist)

unique
Disallows duplicate values in the index. The values for the
indexed fields must be unique. If you try to store a value that
already exists, the assignment operation fails.

ascending|descending
Specifies the order in which an index is built. If neither quali-
fier is specified, the default order is ascending.

Index-name
Names the index. The index name must be unique among all
index names in the database.

table-name
Identifies the table for which the index is defined.

field-name
Specifies a column name or list of field names, separated by
commas, that comprise the index.

Note

For increased efficiency in returning sorted values, use
the qualifier that corresponds to the order you are most
likely to specify in an ordering clause. Using the qualifier
does not replace using the order by clause in the select
statement.

The following statements create a non-unique and unique index,
respectively:

exec sqgl
create index xxx on states (capital);
exec sqgl
create unique index xyz on states (state);

SQL Statements and Commands

Troubleshooting

See Also

Create Index

The following example creates a descending index on the
LENGTH field in the RIVERS table. :

exec sqgl
create descending index longriv on rivers
(length) ;

See the Appendix for a discussion of error handling. The follow-
ing values may be returned to SQLCODE:

¢ SQLCODE < 0 indicates that the statement did not complete.
¢ SQLCODE = 0 indicates success.

¢ SQLCODE > 0 and < 100 indicates an informational message
or warning.

Of these codes, the most likely to occur are -551 and -607:

¢ -551 indicates that a privilege was denied by an access con-
trol list. Check the access control lists for the database to
make sure you have the right to manipulate database enti-
ties.

e -607 indicates that an attempt to update metadata failed.
Check secondary messages to find out why the attempt
failed.

See the discussion of defining metadata with SQL in the
Programmer’s Guide.

SQL Statements and Commands 6-13

Create Table

Create Table

Function

Syntax

Options

6-14

The create table command defines a table and its constituent
fields.

This command is also supported in Dynamic SQL.

create table table-name(field-definition-
commalist)

field-definition::= field-name datatype[not
null]
datatype::= {smallint|integer|date]

char(integer)| wvarchar(integer) |
decimal[(scale)] |float|long float}

table-name
Names the table you want to create. A table name can contain
up to 31 alphanumeric characters, dollar signs ($), and under-
scores (_). However, it must start with an alphabetic character
and be unique among table names in the database.

field-name
Specifies the name you want for the field in the table. The field
name must be unique among all field names in the table.

datatype

The following table lists the SQL datatype and what InterBase
gives you.

SQL Datatype | InterBase Datatype
smallint short

integer long

date date

char char

varchar varying

decimal long

SQL Statements and Commands

Create Table

SQL Datatype | InterBase Datatype

float float
longfloat double
not null
Disallows the null or missing value as a valid value for this
field.
unique

Creates unique indexes on a table You use the unique option
to create unique indexes on a table. Unique can be used in two
ways: as part of the field defintion clauses or as a separate
clause. The following example shows both methods of using
unique. It creates a unique index on the f1 field and another
index on the combination of the f2 and f3 fields.

create table tl

(fl smallint not null unigque,
f2 char(10),

f3 integer,

unique (f2, £3));

Usage Using the create table command automatically invokes the
SQL security scheme for that table. If you create a table, you
are that table’s owner and accordingly have all privileges for
that table. You also have grant option for those privileges for
that table. See the entries in this chapter for grant and
revoke for further information on SQL security.

Note

You cannot assign a security class to tables created with
the SQL create table command. Instead, you control
access to these tables by using SQL grant and revoke
commands.

Example The following statements define tables:

exec sgl
create table states (
state char(2) not null,
state_name varchar(25),
area integer,

SQL Statements and Commands 6-15

Create Table

Troubleshooting

See Also

statehood date,
capital varchar(25));

exec sgl

create table populations (
state char(2) not null,
census_1950 integer,
census_1960 integer,
census_1970 integer,
census_1980 integer));

See the Appendix for a discussion of error handling. The follow-
ing values may be returned to SQLCODE:

SQLCODE < 0 indicates that the statement did not complete.
SQLCODE = 0 indicates success.

SQLCODE > 0 and < 100 indicates an informational message
or warning.

Of these codes, the most likely to occur are -551 and -607:

-551 indicates that a privilege was denied by an access con-
trol list. Check the access control lists for the database to
make sure you have the right to manipulate database
entities.

-607 indicates that an attempt to update metadata failed.
Check secondary messages to find out why the attempt
failed.

See the discussion on defining metadata in the SQL section of the
Programmer’s Guide.

SQL Statements and Commands

Create View

Create View

Function

Syntax

Options

Example

The create view command creates a temporary view of data.
When you create a view by using embedded SQL, the view defi-
nition is not stored on the database. As a result, you cannot
access this definition through qli or gdef. A view definition
should include a field name list and a specific list of fields to be
selected from the source tables. This precaution protects view
definitions from changes to the underlying tables. You can use
any option of the record selection expression except the first and
sorted clauses when using the create view command.

The create view command is also supported in Dynamic SQL.

create view view-namel (field-name-commalist)]
as select-statement

view-name
Names the view you want to create. The view name must be
unique among all view names in the database.

field-name
Optionally names the fields for the view. If you choose not to
supply a field name, gpre uses the field name as specified in the
select statement that follows. Because the field names map
chronologically to the list of selected fields in the select state-
ment, you must specify all view field names or none.

If you supply the field name, it must be unique among all field
names in the view.

select-statement
A select statement that specifies the selection criteria for
records to be included in the view. Instead of the into clause
used in queries, the list of selected fields maps to the list of field
names for the view. If you use select * rather than a field list,
the order is based on the value of the RDB$FIELD_POSITION
field in the RDB$RELATION _FIELDS system table.

The following statements define views:

exec sql
create view half_mile_cities as

SQL Statements and Commands 6-17

Create View

Troubleshooting

See Also

6-18

select city, state, altitude from cities
where altitude > 2500;

exec sqgl
create view capital_cities as
select c.city, s.state_name, c.altitude
from cities ¢, states s where
c.state = s.state and c.city = s.capital;

See the Appendix for a discussion of error handling. The follow-
ing values may be returned to SQLCODE:

e SQLCODE < 0 indicates that the statement did not complete.
e SQLCODE = 0 indicates success.

e SQLCODE > 0 and < 100 indicates an informational message
or warning.

Of these codes, the most likely to occur are -551 and -607:

e -551 indicates that a privilege was denied by an access con-
trol list. Check the access control lists for the database to
make sure you have the right to manipulate database
entities.

e -607 indicates that an attempt to update metadata failed.
Check secondary messages to find out why the attempt
failed.

See the discussion on defining metadata in the SQL section of the
Programmer’s Guide.

SQL Statements and Commands

Declare Cursor

Declare Cursor

Function

Syntax

Options

Examples

The declare cursor declaration defines a cursor by associating
aname with the active set of records determined by a select state-
ment.

declare cursor-name cursor for select statement
[for update of database-field-commalist]

[order by sort-key-commalist]

sort-key::= field-referencelasc|desc]
field-reference: := {database-fieldl|linteger}

cursor-name
Provides a name for the cursor you are declaring.

select-statement
An SQL select statement that specifies search conditions to
determine the active set of the cursor.

for update of
Indicates that your program may update one or more fields of
records in the active set. Standard SQL restricts you to
updating only the listed fields; however, InterBase does not
enforce this restriction.

order by
Specifies the order in which the retrieved records are to be
delivered to the program.

database-field
Specifies the fields in the source table(s) to sort by.

integer
References the field position of one of the fields in the select
statement. Specifies the field to sort by.

The following example declares a cursor, a search condition, and
a sorting clause:

exec sqgl
include sqglca;

SQL Statements and Commands 6-19

Declare Cursor

main ()

{

char statecodel[5];
char cityname[1l6];
int min_pop;

char optionf[4];

min_pop = 100;
/* the crude way */

exec sgl
delete from cities
where population < :min_pop;

exec sqgl
rollback;

/* with finesse */

exec sqgl
declare small_cities cursor for
select city, state
from cities
where population < :min_pop;
exec sqgl
open small_cities;
exec sgl
fetch small_cities into :cityname, :statecode;

while (!SQLCODE)
{
printf ("Eliminate %s, %s? ", cityname, statecode);
gets(option);
if (option[0] == 'Y’) or (option[0] == 'y’)
exec sgl
delete from cities
where current of small_cities;
exec sqgl
fetch small_cities into :cityname,
:statecode;

}

exec sgl
close small_cities;

6-20 SQL Statements and Commands

Declare Cursor

exec sgl
rollback release;

}
The following Pascal example declares a cursor for two tables:

exec sqgl
include sqglca;

main ()

{

char city[16];
char lat[16];
char long[16]
char state[21]

exec sgl
declare city_state_join cursor for
select c.city, s.state_name, c.latitude,
c.longitude
from cities ¢, states s where c.state =
s.state
order by s.state, c.city;

exec sqgl

open city_state_join;
exec sqgl

fetch city_state_join into :city, :state, :lat,
:long;

while (SQLCODE == 0)
{
printf ("%s, %s, %s, %s\n", city, state,
lat, long);
exec sgl
fetch city_state_join into :city, :state,
:lat, :long;
}

exec sqgl
rollback release;

SQL Statements and Commands 6-21

Declare Cursor

Troubleshooting

See Also

6-22

The following program declares a cursor with the union of three
tables:

include sglca;

main ()

{

char city[26];
char state[26];

exec sgl
declare all_cities cursor for
select city, state from cities
union
select city, state from ski_areas
union
select capital, state from states
order by 2, 1;
exec sgl
open all_cities;
exec sgl
fetch all_cities into :city, :state;

while (SQLCODE == 0)
{

printf ("%s, %s\n", city, state);

exec sl

fetch all_cities into :city, :state;

}
exec sql

rollback release;

}

The declare cursor statement is not executed, so it does not pro-
duce runtime errors. If you have syntax errors in your statement
declaration, gpre tries to diagnose it and provide you with an
explanatory error message.

See the entry for select in this chapter.

SQL Statements and Commands

Declare Statement

Declare Statement

Function

Syntax

Options

Example

Troubleshooting

See Also

The declare statement statement identifies names of Dynamic
SQL statements that will be prepared, or prepared and executed
in the program. This statement is not required, but provides
internal documentation.

declare operation-name-commalist statement

operation-name
Specifies the Dynamic SQL statements that will be prepared,
or prepared and executed in a program.

The following statement declares Q1 to be the name of an SQL
operation that will be prepared or executed in the program:

exec sgl declare gl statement;

The declare statement statement is not executed, so it does not
produce runtime errors. If you have syntax errors in your cursor
declaration, gpre tries to diagnose it and provide you with an
explanatory error message.

See also the entry in this chapter for:

* execute
* execute immediate
* prepare

SQL Statements and Commands 6-23

Declare Table

Declare Table

Function

Syntax

Options

6-24

The declare table statement establishes the structure of a table
you have not yet created. If you are creating a new database, or
adding tables to an existing database, use the declare table
statement. The declare table statement gives the preprocessor
a description of the new tables. Ordinarily, gpre gets metadata
descriptions from the existing database. When you are creating
or adding tables to a database, gpre requires you to declare new
tables, so it can validate field usage and datatypes.

declare table-name table (field-definition-
commalist)

field-definition::= field-name datatypel[not
null]
datatype::= {smallint|integer |date]

char(integer) | varchar(integer) |
decimal [(scale)] | float|long float}

table-name
Names the table you want to create. A table name can contain
up to 31 alphanumeric characters, dollar signs ($), and under-
scores (). However, it must start with an alphabetic character
and be unique among table names in the database.

field-name
Specifies the name you want for the field in the table. The field
name must be unique among all field names in the table.

datatype
The following table lists the SQL datatype and what InterBase

gives you.

SQL Datatype | InterBase Datatype
smallint short

integer long

date date

char char

SQL Statements and Commands

Example

Declare Table

SQL Datatype | InterBase Datatype
varchar varying

decimal long

float float

longfloat double

The following program uses the declare table statement:

exec sgl include sqglca;

main()

{

exec sqgl
create database "foo.gdb";

exec sgl
declare recordings table (

number varchar (10) not null,
name varchar (40),
performer_last_name varchar (20),
performer_first_name varchar (10),
composer_last_name varchar (20),
compose_first_name varchar(10),
type char(2));

exec sgl
declare performers table (
last_name varchar(20),
first_name varchar (10),
nationality varchar (10));

exec sqgl
create table recordings (

number varchar (10) not null,
name varchar (40),
performer_last_name varchar (20),
performer_first_name varchar (10),
composer_last_name varchar (20),
compose_first_name varchar (10),

SQL Statements and Commands 6-25

Declare Table

type char(2));
if (SQLCODE) gds_S$print_status (gds_S$status);

exec sqgl
create table performers (
last_name varchar (20),
first_name varchar(10),
nationality varchar(10));

if (SQLCODE) gds_S$print_status (gds_S$status);

exec sgl declare c¢ cursor for
select*
fromrecordings;

if (SQLCODE) gds_S$print_status (gds_S$status);

exec sgl
create unique index il on recordings (number) ;

if (SQLCODE) gds_S$print_status (gds_S$status);

exec sqgl
create unique index 12 on recordings (number,

type);
if (SQLCODE) gds_S$print_status (gds_S$status);

exec sgl
create view performances as
select r.name, r.number, p.last_name,
p.first_name
from recordings r, performers p where
r.performer_last_name = p.last_name and
r.performer_first_name = p.first_name;

if (SQLCODE)
gds_Sprint_status (gds_S$status);

exec sgl

alter table performers
add group char (8),

6-26 SQL Statements and Commands

Troubleshooting

See Also

Declare Table

add money decimal (6, 2),
drop nationality;

if (SQLCODE) gds_Sprint_status (gds_S$status);
}

The declare table statement is not executed, so it does not pro-
duce runtime errors. If you have syntax errors in your table dec
laration, gpre tries to diagnose it and provide you with an
explanatory error message.

See the entries in this chapter for:

* create table
¢ declare cursor

¢ declare statement

SQL Statements and Commands 6-27

Delete

Delete

Function

Syntax

Options

Examples

6-28

The delete statement erases records in a table or in the active set
of a cursor.

If you do not provide a search condition (where...), all records in
the specified table are deleted. Be careful with this option.

delete from table-name
[where predicate|where current of cursor-name]

table-name
Specifies the table from which a record is to be deleted.

where predicate
Determines the record to be deleted.

where current of cursor-name
Specifies that the current record of the active set is to be
deleted. This form of delete must follow:

e The declaration of the cursor with a declare cursor state-
ment
¢ The opening of that cursor with an open statement

e The retrieval of a record from the active set of that cursor
with a fetch statement

The following statement erases the entire table named
VILLAGES (which does not exist in the sample database):

exec sqgl delete from villages;

The following program deletes all records from CITIES with a
population less than that of the host variable MIN_POP:

exec sgl
include sqglca;

main ()

{

char statecodel[5];
char cityname [16]
int min_pop;

SQL Statements and Commands

Delete

char option(4];
begin

min_pop = 100;
/* the crude way */

exec sqgl
delete from cities
where population < :min_pop;

exec sqgl
rollback;

/* with finesse */

exec sgl
declare small_cities cursor for
select city, state
from cities
where population < :min_pop;
exec sqgl
open small_cities;
exec sqgl
fetch small_cities into :cityname, :statecode;

while (!SQLCODE)
{
printf ("Eliminate %s, %s 2",
cityname, statecode?);
gets(option) ;
if (option == ’'Y’) or (option == ‘y’)
exec sqgl
delete from cities
where current of small_cities;
exec sqgl
fetch small_cities into
:cityname, :statecode;

}

exec sqgl

close small_cities;
exec sqgl

rollback release;

SQL Statements and Commands 6-29

Delete

Troubleshooting

See Also

6-30

See the Appendix for a discussion of error handling. The follow-
ing values may be returned to SQLCODE:

¢ SQLCODE < 0 indicates that the statement did not complete.
¢ SQLCODE = 0 indicates success.

¢ SQLCODE > 0 and < 100 indicates an informational message
or warning.

¢ SQLCODE = 100 indicates that no qualifying records were
found.

See also the entries in this chapter for:

e declare cursor

e open
e fetch
e select

See also the entry in Chapter 5 for predicate.

SQL Statements and Commands

Describe

Function

Syntax
Options

Example

Troubleshooting

Describe

The describe statement retrieves the contents of the SQLDA
(that is, SQLD and for each value to be returned, the SQLTYPE,
SQLLEN, and SQLNAME) for use in allocating buffers with
Dynamic SQL statements. If you have used the into sqlda
option on the prepare statement, you do not have to use the
describe statement.

If the value returned for SQLD is larger than SQLN, you must
allocate a larger SQLD and re-issue the describe statement.

describe operation-name into sglda-structure

operation-name
A Dynamic SQL statement that has been processed with the
prepare statement.

sglda-structure
Specifies the SQLDA into which the output of the describe
statement is placed.

The following statement retrieves information about the output
of a prepared select statement:

exec sqgl describe gl into sglda;

See the Appendix for a discussion of error handling. The follow-
ing values may be returned to SQLCODE:

* SQLCODE <0 indicates that the statement did not complete.
* SQLCODE = 0 indicates success.

* SQLCODE > 0 and < 100 indicates an informational message
or warning.

The describe statement may result in SQLCODE -518 being
returned.

The Appendix describes this and other Dynamic SQL errors.

SQL Statements and Commands 6-31

Describe
See Also See also the entries in this chapter for:

* execute

e prepare

6-32 SQL Statements and Commands

Drop Database

Drop Database

Function The drop database command deletes an entire database.
Syntax drop database guoted-filespec
Option quoted-filespec

Specifies the database you want to drop.
Example The following example deletes the entire database:
exec sqgl drop database ‘phones.gdb’;

Troubleshooting See the Appendix for a discussion of error handling. The follow-
ing values may be returned to SQLCODE:

¢ SQLCODE < 0 indicates that the statement did not complete.

¢ SQLCODE = 0 indicates success.

¢ SQLCODE > 0 and < 100 indicates an informational message
or warning.

Of these codes, the most likely to occur are -551 and -607:

¢ .551 indicates that a privilege was denied by an access con-
trol list. Check the access control lists for the database to
make sure you have the right to manipulate database
entities.

¢ -607 indicates that an attempt to update metadata failed.
Check secondary messages to find out why the attempt
failed.

See Also See the discussion on defining metadata with SQL in the
Programmer’s Guide.

SQL Statements and Commands 6-33

Drop Index

Drop Index

Function

The drop index command deletes an index. If the index you are
attempting to delete is in use, your program waits until the index
is free before deleting it.

This command is supported in Dynamic SQL.

Syntax

drop index index-name

Option

Example

Troubleshooting

See Also

6-34

index-name
Specifies the index you want to delete.

The following example deletes an index:
exec sqgl drop index statesnames;

See the Appendix for a discussion of error handling. The follow-
ing values may be returned to SQLCODE:

* SQLCODE < 0 indicates that the statement did not complete.

* SQLCODE = 0 indicates success.

* SQLCODE > 0 and < 100 indicates an informational message
or warning.

* SQLCODE of 100 indicates that no qualifying records were
found.

Of these codes, the most likely to occur are -551 and -607:

* -551 indicates that a privilege was denied by an access con-
trol list. Check the access control lists for the database to
make sure you have the right to manipulate database
entities.

* -607 indicates that an attempt to update metadata failed.
Check secondary messages to find out why the attempt
failed.

See the discussion of defining metadata in the SQL part of the
Programmer’s Guide.

SQL Statements and Commands

Drop Table

Drop Table

Function The drop table command deletes a table. If you try to drop a
table used in a view, computed field, or trigger, InterBase returns
an error. You must delete the view, field or trigger before you
delete the table. If the table is in use, your program waits until
the table is free before deleting it. The drop table command also
deletes all indexes on the deleted table.

This command is supported in Dynamic SQL.

Syntax drop table table-name

Option table-name
Specifies the table to drop.

Example The following examples deletes a table:
exec sgl drop table tourism;

Troubleshooting See the Appendix for a discussion of error handling. The follow-
ing values may be returned to SQLCODE:
¢ SQLCODE < 0 indicates that the statement did not complete.
e SQLCODE = 0 indicates success.

e SQLCODE > 0 and < 100 indicates an informational message
or warning.

Of these codes, the most likely to occur are -551 and -607:
¢ 551 indicates that a privilege was denied by an access control

list. Check the access control lists for the database to make
sure you have the right to manipulate database entities.

¢ .607 indicates that an attempt to update metadata failed.
Check secondary messages to find out why the attempt
failed.

See Also See the discussion of defining metadata in the SQL part of the
Programmer’s Guide.

SQL Statements and Commands 6-35

Drop Table

Drop View

Function

Syntax
Option

Example

Troubleshooting

See Also

6-36

The drop view command deletes a view. If you try to drop a view
used in another view, a computed field, or a trigger, InterBase
returns an error. You must delete the view, field or trigger before
you delete the view. The tables that comprise the view are not
affected.

This command is supported in Dynamic SQL.

drop view view-name

view-name
Specifies the view to drop.

The following example deletes a view:
exec sgl drop view colonies;

See the Appendix for a discussion of error handling. The follow-
ing values may be returned to SQLCODE:

¢ SQLCODE < 0 indicates that the statement did not complete.

¢ SQLCODE = 0 indicates success.

* SQLCODE > 0 and < 100 indicates an informational message
or warning.

Of these codes, the most likely to occur are -551 and -607:

e -551 indicates that a privilege was denied by an access con-
trol list. Check the access control lists for the database to
make sure you have the right to manipulate database
entities.

* -607 indicates that an attempt to update metadata failed.
Check secondary messages to find out why the attempt
failed.

For a discussion of the SQLDA, see the chapter on setting up an
SQLDA in the part on DSQL in the Programmer’s Guide.

SQL Statements and Commands

Execute

Function
Syntax

Options

Example

Troubleshooting

Execute

The execute statement runs a Dynamic SQL string that has
been compiled with the prepare statement.

execute operation-name [using descriptor
descriptor-name]

operation-name
Specifies the name of the prepared string to run.

descriptor-name
Specifies that the values corresponding to the prepared string’s
parameters are passed through the SQL descriptor area. The
InterBase implementation of Dynamic SQL does not support
the use of host variables to pass values.

The following statement executes a Dynamic SQL string:
EXEC SQL EXECUTE Q1;

See the Appendix for a discussion of error handling. The follow-
ing values may be returned to SQLCODE:

¢ SQLCODE < 0 indicates that the statement did not complete.
* SQLCODE = 0 indicates success.

¢ SQLCODE > 0 and < 100 indicates an informational message
or warning.

¢ SQLCODE = 100 indicates that no qualifying records were
found.

The execute statement may result in SQLCODEs 303, 510, 518,
and 804 being returned.

The Appendix describes these and other Dynamic SQL errors.

SQL Statements and Commands 6-37

Execute

See Also See also the entry in this chapter for:

¢ declare statement
¢ describe
* prepare

For a discussion of the SQLDA, see the chapter on setting up an
SQLDA in the part on DSQL in the Programmer’s Guide.

6-38 SQL Statements and Commands

Execute Immediate

Execute Immediate

Function

Syntax

Options

Example

Troubleshooting

The execute immediate statement prepares and executes a
Dynamic SQL string. By using this statement, you eliminate the
need to issue a prepare statement first.

execute operation-name([using descriptor
descriptor-name]

operation-name
Specifies the name of the prepared string to run.

descriptor-name
Specifies that the value corresponding to the prepared string’s
parameters are passed through the SQL descriptor area. The
InterBase implementation of Dynamic SQL does not support
the use of host variables to pass values.

The following statement executes a Dynamic SQL string:
EXEC SQL EXECUTE IMMEDIATE Q1;

See the Appendix for a discussion of error handling. The follow-
ing values may be returned to SQLCODE:

¢ SQLCODE < 0indicates that the statement did not complete.
¢ SQLCODE = 0 indicates success.

¢ SQLCODE > 0 and < 100 indicates an informational message
or warning.

* SQLCODE of 100 indicates that no qualifying records were
found.

The execute immediate statement may result in SQLCODEsSs -
103, -104, -204, -206, and -510 being returned.

The Appendix describes these and other Dynamic SQL errors.

SQL Statements and Commands 6-39

Execute Immediate

See Also See the entries in this chapter for:

¢ declare statement
¢ describe

* execute

* prepare

For a discussion of the SQLDA, see the chapter on setting up an
SQLDA in the part on DSQL in the Programmer’s Guide.

6-40 SQL Statements and Commands

Fetch

Fetch

Function The fetch statement advances the position of the cursor to the
next record of the active set.

Syntax The fetch statement is also used in Dynamic SQL. The syntax
diagram shows the two forms of the statement.

Embedded SQL form:

fetch cursor-name[into host-item-commalist]
host-item ::= host-variablelindicator]
indicator ::= [indicator]:indicator-variable
indicator-variable ::= Integer

Dynamic SQL form:

fetch cursor-name using descriptor descriptor-
name

cursor-name
Specifies the open cursor from which you want to fetch records.

host-item
Specifies a host language variable into which fields from
records in the active set of the cursor will be fetched. The into
list is not required if the fetch gets records to be deleted or
updated; however, if you display the record before you delete or
update it, you need the into list.

descriptor-name
Specifies the SQL descriptor area (SQLDA) associated with the
cursor. The SQLDA is used in DSQL to communicate informa-
tion between a program and InterBase.

indicator-variable
An integer that gets the missing value for the field immediately
preceding it. For example,

fetch ¢ into :builder, :model
retrieves two columns into host-variables build and model.

fetch ¢ into :builder :model

SQL Statements and Commands 6-41

Fetch

Usage

6-42

retrieves one column into host-variable builder and sets indica-
tor-variable model to the value of the missing flag for column
builder in this row.

Note

InterBase enforces SQL’s requirement that the number
of columns in a fetch must equal the number of columns
in the declare cursor.

Keep the following points in mind when you use the fetch state-
ment:

* Ifthe fetch statement immediately follows an open state-
ment, the cursor is set before the first record in that cursor.
The fetch statement advances the cursor to the first record.

* Ifyou try to fetch beyond the last record in the active set,
InterBase automatically closes the cursor and returns an
end-of-file message.

* Once the fetch statement has advanced the cursor, it writes
the fields of that record into the listed host variables or the
buffers pointed to by the SQLDA descriptor.

* Ifyou want to update or delete a record in a cursor’s active
set, you must first fetch it. You can then use the update
statement to modify one or more of its field values, or use the
delete statement to erase it.

To loop through the records selected by the cursor, enclose the
fetch statement in a host language looping construct. Terminat-
ing the loop when the SQLCODE is non-zero is usually good prac-
tice, because the loop ends when the active set of the cursor is
finished.

Because the select substatement of the declare cursor state-

ment explicitly lists database field names, you must be sure the
fields you provide to receive the data match the database fields

in order, size, and datatype.

For example, in an embedded SQL program, the third host vari-
able you list in the into clause of the fetch statement must be of
the same datatype and length as the third field listed in the

select substatement of the cursor declaration. In a Dynamic SQL
program, the third parameter in the output SQLDA must match
the third field listed in the select substatement of the cursor dec-
laration. Thus, if the third field listed in the select substatement

SQL Statements and Commands

Examples

Fetch

is PHONE (a ten character fixed length text field in the CROSS_-

COUNTRY relation) then one of the following must be true:

¢ In an embedded SQL fetch statement, the third host

language variable in the into clause must be a character

datatype, and at least 10 characters long.

e In a Dynamic SQL fetch statement, the third parameter in
the SQLDA must provide storage for at least 10 characters.

Fields in the select substatements are matched to fields listed in
the into clause of the SQLDA named in the using descriptor
clause by the order of the listing. If the order of the two lists is

different, the wrong values are assigned. Using the select *

from table syntax is discouraged in cursors because adding or
dropping fields in that table causes the select list to change. This
in turn causes errors at runtime because the fetch into list or

the SQLDA is not changed to match.

The following example declares a cursor, opens it, accesses
records in its active set, and then closes the cursor:

exec sqgl

begin declare section;
exec sql

end declare section;

main()

{

char statecodel[3];
char cityname[26];

exec sqgl
declare bigcities cursor for
select city, state from cities
where population > 1000000;

exec sqgl
open bigcities;
exec sqgl
fetch bigcities into :cityname, :statecode;

printf ("\n");
while (SQLCODE == 0)
{

SQL Statements and Commands

6-43

Fetch

Troubleshooting

6-44

begin
printf ("%$s is in %s\n", cityname,
statecode) ;
exec sgl
fetch bigcities into :cityname,
:statecode;
}
exec sqgl
close bigcities;
exec sqgl

commit release;

}

The following statements are from a Dynamic SQL program that
retrieves records through a cursor:

EXEC SQL DECLARE C CURSOR FOR Q1;
EXEC SQL OPEN C;

setup_buffer (buffer, sglda);

for (lines = 0;; ++lines

{
EXEC SQL FETCH C USING DESCRIPTOR sglda;

if (SQLCODE)
break;
if (!lines)
printf ("\n");
print_line (sqglda);
}
EXEC SQL CLOSE C;

See the Appendix for a discussion of error handling.
The following values may be returned to SQLCODE:

* SQLCODE < 0 indicates that the statement did not complete.
* SQLCODE = 0 indicates success.

* SQLCODE > 0 and < 100 indicates an informational message
or warning.

* SQLCODE = 100 indicates the end of the input stream.

SQL Statements and Commands

See Also

Fetch

When you use the fetch statement with Dynamic SQL strings,
you may also receive SQLCODEs -303, -504, and -804.

The Appendix describes these and other Dynamic SQL errors.

See the entries in this chapter for:

open

declare cursor
select

update

delete

whenever

See the section on DSQL in the Programmer’s Guide.

For a discussion of the SQLDA, see the chapter on setting up an
SQLDA in the part on DSQL in the Programmer’s Guide.

SQL Statements and Commands 6-45

Grant

Grant

Function The grant command defines privileges for users for designated
tables and views. It can also grant a user the ability to pass along
privileges. A table’s owner is the only user to have automatic
grant authority for that table. To pass the ability to grant privi-
leges to a user, the grant statement must contain the with
grant option clause.

The grant command is supported in Dynamic SQL.

Syntax grant privilege-comma-list on table-namelview-
name to user [with grant option]
privilege::= {all [privileges]|select|delete|
insert |update (column-list)}
user: :=public|userid-comma-1ist

Options table-name

Specifies the table to which you assign privileges.
view-name
Specifies the view to which you assign privileges.
user
Specifies the user assigned privileges.
with grant option
Passes grant authority along to the user(s) specified in the
grant command. This is valid for only those privileges autho-
rized in the grant statement.
privilege
Specifies the operations for which a user has authority.
Privilege | Allows User to
All Select, delete, insert, update
Select Retrieve records from a table or view
Delete Eliminate records from a table or view

6-46

SQL Statements and Commands

Grant

Privilege

Allows User to

Insert

Store new records in a table or view

Update

Change the value of one or more fields in the existing
records in a table or view

Usage

Examples

Troubleshooting

If a view is a subset of a table, it is updated directly. If a view
is either a join of two or more tables, or a join of table to itself,
triggers must be in place in order for the records in the tables
to change.

public/userid
Specifies which authorized users have access to privileges for a
table or view. Public incorporates all authorized user ids.

Once you have secured a table using SQL, you should use only
SQL to further secure it. Do not use the InterBase security class
system in combination with SQL security.

The following example grants select and delete privileges to a
user and gives that user the authority to grant other users select
and delete privileges:

exec sqgl
grant select, delete on cities to julie with
grant option;

The following example grants update privileges to a user for spe-
cific fields in a table:

exec sqgl
grant update state_name, capital on states to
john;

See the Appendix for a discussion of error handling. The follow-
ing values may be returned to SQLCODE:

¢ SQLCODE < 0 indicates that the statement did not
complete.
¢ SQLCODE = 0 indicates success.

e SQLCODE > 0 and < 100 indicates an informational message
or warning.

Of these codes, the most likely to occur are -551 and -607:

SQL Statements and Commands 6-47

Grant

¢ -551 indicates that a privilege was denied by an access con-
trol list. Check the access control lists for the database to
make sure you have the right to manipulate database enti-
ties.

* -607 indicates that an attempt to update metadata failed.
Check secondary messages to find out why the attempt
failed.

See Also See the entry for revoke in this chapter.

For more information on triggers, see the discussion of preserv-
ing data integrity in the Data Definition Guide.

See the chapter on securing data and metadata in the Data Def-
inition Guide.

6-48 SQL Statements and Commands

Insert

Function

Syntax

Options

Insert

The insert statement stores a new record into the specified table.

You can assign field values by inserting values, by picking up val-
ues from an existing record, or by a combination of both.

insert into table-name[database-field-commalist]
{values Iinsert-item-commalist|select-statement}
insert-item::=

{constant | host-variable-expression|/null}

table-name
Specifies the table into which you want to store a new record.

database-field ‘
Lists the field in table-name for which you are providing a
value.

SQL by itself does not support manipulation of the blob
datatype. You can store a null value for a blob field, but you
must use GDML or gds calls to create the blob, then use the
SQL assignment to include the blob in the new record.

If the field you are assigning is a date, you cannot handle the
field directly with SQL. Instead, you must use date handling
functions such as GDML’s gds_$encode_date to convert your
external date representation to a host variable in the InterBase
date format (that is, an array of two 32-bit integers). Then use
the SQL assignment to assign the host variable to the database
field.

Note

The database field list is optional. If it is omitted, values
are assigned to all the fields in the table in their normal
order. Leaving out the field list is not recommended
because changes to the table, such as adding or reorder-
ing fields, will cause the assignment list to change with-
out warning when the program is next precompiled with
gpre.

SQL Statements and Commands 6-49

Insert

Examples

6-50

insert-item
Provides a value for database-field. The value can be a con-
stant, host variable, or null.

select-statement
Specifies that the values for the new record are to come from
the record identified by a select statement.

constant
Specifies a string of ASCII digits interpreted as a number or as
a quoted string of ASCII characters.

expression
An arithmetic computation using host variables, constants, or,
in the select statement, selected fields.

host-variable
Variable used for data transfer between a host language and
InterBase.

null
Inserts a null value in a field.

The following program stores a record, assigning quoted con-
stants for field values:

exec sqgl
include sqglca;

main ()

{

exec sqgl
insert into river_states
(river, state)
values (’Croton’, 'NY’);

exec sgl
commit release;

}

The following program stores a new record into STATES using
host variables and null as sources for values:

exec sgl
include sglca;

SQL Statements and Commands

Insert

main()

{

char statel[3];

char state_name(21];
char capital([l6];
date : gds_Squad;
date_array:gds_Stm;

date_array.tm_sec
date_array.tm_min :
date_array.tm_hour := 0;
date_array.tm_mday := 1
date_array.tm_mon := 1;
date_array.tm_year := 90;
date_array.tm_wday := 0;
date_array.tm_yday := 0;
date_array.tm_isdst := 0;

In o
o O

gds_S$encode_date (date_array, date);

state := 'GU’;
state_name := ’'Guam’;
capital := ’‘Agana’;
exec sqgl

insert into states

(state, state_name, area, capital, statehood)

values (:state, :state_name, null, :capital,
:date) ;

exec sqgl
commit release;

}

The following program stores a new record using values from an
existing record and the value of a host variable for assignments:

exec sqgl
include sqglca;
main ()

{

char villeancienne([26];
char villenouvelle[26];

printf ("Enter city to clone: ");
gets (villeancienne);

SQL Statements and Commands 6-51

Insert

printf ("Enter new name for city: ");
gets (villenouvelle);

exec sgl insert into cities (city, state,
population,
altitude, latitude_degrees,
latitude_minutes,
latitude_compass, longitude_degrees,
longitude_minutes,
longitude_compass)
select :villenouvelle, state, population,
altitude, latitude_degrees,
latitude_minutes,
latitude_compass, longitude_degrees,
longitude_minutes,
longitude_compass
from cities where city = :villeancienne;
exec sgl
commit
release

}

The following program uses the non-recommended form of the
insert statement, in which the database field list is omitted:

exec sgl
include sglca;

main ()

{

char state[3];

char state_name[21];
char capitall26];

state = 'GU’;
state_name = ’'Guam’;
capital = ’‘Agana’;
exec sqgl

insert into states
values (:state, :state_name, null, null,
:capital) ;
exec sqgl
commit release;

6-52 SQL Statements and Commands

Troubleshooting

See Also

Insert

See the Appendix for a discussion of error handling. The follow-
ing values may be returned to SQLCODE.:

¢ SQLCODE < 0indicates that the statement did not complete.
¢ SQLCODE = 0 indicates success.

* SQLCODE > 0 and < 100 indicates an informational message
or warning.

* SQLCODE = 100 indicates that no qualifying records were
found. This code occurs when the source of values is a select
subquery that returned no records.

See the entry for select in this chapter.

SQL Statements and Commands 6-53

Open
Open

Function

Syntax

Options

Example

6-54

The open statement activates a cursor. This statement causes
InterBase to evaluate the search conditions associated with the
specified cursor. Once the access method has determined the set
of records that satisfies the query, it activates the cursor and
makes the selected records the “active set” of that cursor.

The access method then places the cursor itself before the first
record in the active set. If you want to retrieve or update records
in that set, use the fetch statement. Once you open the cursor, the
first fetch statement operates on the very first record in the
active set. Subsequent fetch statements advance the cursor
through the results table associated with that cursor.

The access method does not re-examine the host variables or val-
ues passed to the search conditions until you close the cursor and
re-open it. Changes you make to their values are not reflected in
the active set until you close and re-open the cursor.

If someone else accesses the database after you open a cursor,
makes changes, and commits them, the active set may be differ-
ent the next time you open that cursor if you commit your trans-
action.

open cursor-name [using descriptor
descriptor-name]

cursor-name
Specifies the declared cursor you want to access.

descriptor-name
Specifies that the values corresponding the prepared state-
ment’s parameters are passed through the SQLDA descriptor.
This clause is used only in Dynamic SQL.

The following example declares a cursor, opens it, accesses
records in its active set, and then closes the cursor:

exec sqgl

begin declare section;
exec sqgl

end declare section;

SQL Statements and Commands

Troubleshooting

Open

main ()

{

char statecode[3];
char cityname[26];

exec sqgl
declare bigcities cursor for
select city, state from cities
where population > 1000000;

exec sqgl
open bigcities;
exec sqgl
fetch bigcities into :cityname, :statecode;

printf (" ");
while (!SQLCODE)
{
printf ("%s is in %s\n", cityname, statecode) ;
exec sql
fetch bigcities into :cityname, :statecode;

}

exec sgl

close bigcities;
exec sqgl

rollback release;

}

See the Appendix for a discussion of error handling. The follow-
ing values may be returned to SQLCODE:

* SQLCODE < 0 indicates that the statement did not complete.
e SQLCODE = 0 indicates success.

* SQLCODE > 0 and < 100 indicates an informational message
or warning.

* SQLCODE = 100 indicates that no qualifying records were
found.

When you use the open statement with Dynamic SQL strings,
you may also receive SQLCODEs -303, -504, and -804.

The Appendix describes these and other Dynamic SQL errors.

SQL Statements and Commands 6-55

Open

See Also See the entries in this chapter for:

¢ declare cursor
e fetch

* close

e commit

¢ rollback

¢ whenever

6-56 SQL Statements and Commands

Prepare

Function

Syntax

Options

Example

Troubleshooting

Prepare

The prepare statement processes a Dynamic SQL statement. It:

* Accepts an SQL statement via a host language variable
¢ Checks the statement for errors

* Compiles the statement into a structure that can be executed
by an SQL execute statement

prepare operation-namel[into sglda_variable] from
:variable

operation-name
Provides a name for the SQL operation you are describing. The
name can contain up to 31 alphanumeric characters, dollar
signs ($), and underscores (_). However, it must start with an
alphabetic character (A—Z, a—z).

Except for C programs, gpre is not sensitive to the case of the
name string. For example, it treats “B” and “b” as the same
character. For C programs, you can control the case sensitivity
of the name with the either_case switch when you preprocess
your program.

into sqglda_variable
Instructs the preprocessor to place information about output
fields into the SQL descriptor area. This step is equivalent to
using the describe statement.

:variable
A host language variable declared to contain varying string
data.

The following statement prepares a Dynamic SQL statement
from a host variable statement:

EXEC SQL PREPARE Q1 INTO sglda FROM :statement;

See the Appendix for a discussion of error handling. The follow-
ing values may be returned to SQLCODE:

¢ SQLCODE < 0 indicates that the statement did not complete.

SQL Statements and Commands 6-57

Prepare

See Also

6-58

¢ SQLCODE = 0 indicates success.

* SQLCODE > 0 and < 100 indicates an informational message
or warning.

The prepare statement may result in SQLCODEs -103, -104,
-204, and -206 being returned.

The Appendix describes these and other Dynamic SQL errors.
See also the entries in this chapter for:

¢ declare statement
¢ describe

* execute

SQL Statements and Commands

Revoke

Revoke

Function The revoke command takes privileges away from a user for a
designated table or view. Only the user who grants a privilege
can revoke that privilege. A revoke command does not effect priv-
ileges a user may have received from other grant command. The
revoke command has a cascading effect on any privileges that
were passed on through the with grant option clause in the grant
command.

The revoke command is supported in Dynamic SQL.

Syntax revoke privilege-comma-list on table-name|view-
name from userid-comma-list

Options privilege

Specifies the operations for which a user has authority.
Privilege | Allows User to
All Select, delete, insert, update
Select Retrieve records from a table or view
Delete Eliminate records from a table or view
Insert Store new records in a table or view
Update Change the value of one or more fields in the existing records.
in a table or view

table-name
Specifies the table from which you take away privileges.

view-name
Specifies the view from which you take away privileges.

userid
Specifies the user whose privileges you remove.

SQL Statements and Commands 6-59

Revoke

Example

Troubleshooting

See Also

6-60

The following example takes the select privilege away from a
user for the CITIES table:

exec sgl
revoke select on cities from julie;

In the following example, John grants Julie select and delete
privileges on a table that he created, and he gives her the ability
to pass the grant privilege to other users:

exec sqgl
grant select, delete on rivers to julie with
grant option;

Julie can now pass the select privilege for the RIVERS table on
to Dana:

exec sgl
grant select on rivers to dana;

If John decides to revoke Julie’s select privilege for the RIVERS
table, the revoke cascades through Julie’s grant statement and
also takes away Dana’s select privilege:

exec sqgl
revoke select on rivers from julie;

See the Appendix for a discussion of error handling. The follow-
ing values may be returned to SQLCODE:

¢ SQLCODE < 0indicates that the statement did not complete.
¢ SQLCODE = 0 indicates success.

¢ SQLCODE > 0 and < 100 indicates an informational message
or warning.

Of these codes, the most likely to occur are -551 and -607:

e -551 indicates that a privilege was denied by an access con-
trol list. Check the access control lists for the database to
make sure you have the right to manipulate database
entities.

® -607 indicates that an attempt to update metadata failed.
Check secondary messages to find out why the attempt
failed.

See the entry in this chapter for grant.

SQL Statements and Commands

Rollback

Function

Syntax

Options

Example

Rollback

The rollback command restores the database to its state prior to
the current transaction. It also closes open cursors.

The rollback command is supported in Dynamic SQL.

rollback [work] [release]

work
An optional word.

release
Breaks your program’s connection to the attached database,
thus making system resources available to other users.

The following code segment shows the use of rollback in an error
condition:

exec sgl begin declare section;
exec sgl end declare sgection;
main ()

{

exec sgl
insert into rivers (river, source, outflow,
length) select "Assabet", state, "Charles", 35
from cities where city = "Maynard";

if (SQLCODE)

{
printf ("Encountered SQLCODE %d\n", SQLCODE) ;

if (SQLCODE != 100)
{
printf (" expanded error message -\n");
gds_Sprint_status (gds_Sstatus);
exec sqgl

rollback release;
}
}

else

SQL Statements and Commands 6-61

Rollback

Troubleshooting

See Also

6-62

exec sgl commit release;

}

See the Appendix for a discussion of error handling. The follow-
ing values may be returned to SQLCODE:

* SQLCODE < 0indicates that the statement did not complete.
* SQLCODE = 0 indicates success.

¢ SQLCODE > 0 and < 100 indicates an informational message
or warning.

See the entries in this chapter for:

e commit

e whenever

SQL Statements and Commands

Select

Function

Syntax

Options

Select

The select statement finds the record(s) of the tables specified in
the from clause that satisfy the given search condition.

You can use the select statement by itself or within a declare
cursor statement.

If you use the select statement by itself:
* The search conditions you specify should return at most one
record.

For example, the search condition references a field for which
duplicate values have been disallowed.

* InterBase sets SQLCODE to -1 if there is more than one qual-
ifying record.

* The select statement requires the into clause.

If you use the select statement within a declare cursor state-

ment:

* The search condition can identify an arbitrary number of
records.

* Remember that declare cursor is only declarative. Before
you can retrieve records via the cursor, you must open it and
fetch records sequentially.

* You cannot use the into clause.

select-statement ::= union-expression
[ordering-clause]

union-expression::= select-expression
[into-clause] [union union-expression]
ordering-clause::= order by sort-key-commalist
sort-key::= {database-field|integer} [asc|desc]
into-clause::= into host-variable-commalist

union-expression
Creates dynamic tables by appending tables. The source tables
should have identical structures or at least share some common

fields.

SQL Statements and Commands 6-63

Select

Example

6-64

select-expression
Creates a stream of records which is input to the union, if a
union is present. In the absence of a union, it produces the
active set of the select statement.

ordering-clause
Returns the record stream sorted by the values of one or more
database-fields. You can sort a record stream alphabetically,
numerically, by date, or by any combination.

The database-field is called the sort key. You can construct an
ordering-clause that includes as many sort keys as you want.

For each sort key, you can specify whether the sorting order is
asc (ascending, the default order for the first sort key) or desc
(descending). Unlike GDML’s sort clause, the SQL sorting
order is not “sticky.”

into-clause
Specifies the host variables into which you will retrieve data-
base field values. You must preface each host variable with a
colon (:). The colon is an SQL convention that indicates the fol-
lowing variable is not a database field. You cannot use the into-
clause in a select statement that appears inside a cursor dec-
laration.

The following select statement includes an ordering-clause with
two sort keys:

exec sgl
declare urban_population_centers cursor for
select city, state from cities
order by state, population desc;

The following select statement includes an into-clause that spec-
ifies which database fields are put into which host variables:

exec sgl
select population, altitude, latitude,
longitude
into :pop, :alt, :lat, :long
from cities
where city = ‘Boston’;

This example assumes you declared the variables POP, ALT,
LAT, and LONG to correspond to the database fields

SQL Statements and Commands

Troubleshooting

Select

POPULATION, ALTITUDE, LATITUDE, and LONGITUDE
from the CITIES table.

The following cursor declaration joins records from two t-ables:

exec sql
declare city_state cursor for
select c.city, s.state_name, c.altitude,
c.population
from cities ¢, states s where
c.state = s.state
order by s.state_name, c.city;

The following cursor declaration retrieves the union of two
tables:

exec sqgl
declare all_cities cursor for

select distinct city, state from cities
union
select distinct city, state from ski_areas
union
select distinct capital, state from states
order by 2, 1:;

The following example retrieves a record from STATES using
STATE, a field with unique values:

exec sgl
select state_name, capital
into :statename, :capital
from states
where state = :st;

The following example declares a cursor for all items that meet
the specified criteria:

exec sqgl
declare middle_america cursor for
select city, state, population from cities
where latitude_degrees between 33 and 42
and longitude_degrees between 79 and 104;

See the Appendix for a discussion of error handling. The follow-
ing values may be returned to SQLCODE:

¢ SQLCODE < 0 indicates that the statement did not complete.

SQL Statements and Commands 6-65

Select

See Also

6-66

SQLCODE = 0 indicates success.

SQLCODE > 0 and < 100 indicates an informational message
or warning.

SQLCODE of 100 indicates that no qualifying records were
found.

SQLCODE = -1 indicates a select statement has returned
more than one record.

See the entries in this chapter for:

open
fetch

close

~whenever

See also the entry in Chapter 5 for select expression.

SQL Statements and Commands

Update

Function

Syntax

Options

Update

The update statement changes the values of one or more fields
in a record in a table or in the active set of a cursor.

If you do not provide a search condition (where...), InterBase
updates all records in table-name. Be careful with this option.

Do not update records whose selection expression includes a dis-
tinct clause or a group clause.

update table-name

set assignment-commalist

(where predicate|where current of cursor-name]
assignment::= database-field=scalar-expression

table-name
Specifies the table that contains the record you want to update.

assignment
Assigns the scalar-expression to database-field. This assign-
ment statement belongs to SQL and not to the host language.
Do not use a host language assignment or equality operator
inside an SQL update statement.

If the field you are assigning is a date, you cannot handle the
field directly with SQL. Instead, you must use date functions
such as GDML’s gds_$encode_date to convert your external
date representation to a host variable in the InterBase date for-
mat (that is, an array of two 32-bit integers), and then use the
SQL assignment to assign the value of the host variable to the
database field.

where predicate
Selects the record to modify.

where current of cursor-name
Specifies that the current record of the active set is to be modi-
fied. If you use the where current of clause, InterBase
updates only the record at which the cursor is pointing. This
form of update must follow:

* Declaring the cursor with a declare cursor statement

SQL Statements and Commands 6-67

Update

* Opening the cursor with an open statement

* Retrieving a record from the active set of that cursor with
a fetch statement

Examples The following statement updates the POPULATION field of all
records from CITIES that are located in New York:

exec sgl update cities
set population = population * 1.03
where state = ‘NY’;

The following statement modifies the POPULATION field of all
records in the CITIES table:

exec sgl update citiles
set population = population * 1.03;

The following example declares a cursor, opens it, fetches a
record, and then alters that record:

exec sqgl

begin declare section;
exec sgl

end declare section;

main ()

{

char statecode[3;

char st[3];

char cityname[1l6];

int multiplier, pop, new_pop;

print ("Enter state with population needing
adjustment: ");

gets (statecode);

printf ("Percent change (eg 5 => 5% increase; -5 =>
5% decrease): ");

scanf (%d, multiplier);

multiplier = multiplier + 100;

exec sqgl
declare pop_mod cursor for
select city, state, population from cities

where state = :statecode
for update of population;
exec sqgl

6-68 SQL Statements and Commands

Troubleshooting

See Also

Update

open pop_mod;
exec sqgl
fetch pop_mod into :cityname, :st, :pop;
printf (" ");
while (SQLCODE == 0)
{
new_pop := trunc ((pop * multiplier) / 100);
printf ("%s, %s, old population: %, new
population: %d\n", cityname, st, pop, new_pop) ;
exec sqgl
update cities
set population = :new_pop
where current of pop_mod;
exec sqgl
fetch pop_mod into :cityname, :st, :pop;

}

exec sgl

close pop_mod;
exec sqgl

rollback release;
}

See the Appendix for a discussion of error handling. The follow-
ing values may be returned to SQLCODE:

* SQLCODE < 0 indicates that the statement did not complete.
¢ SQLCODE = 0 indicates success.

* SQLCODE > 0 and < 100 indicates an informational message
or warning.

* SQLCODE = 100 indicates that no qualifying records were
found.

See the entries in this chapter for:

e declare cursor

* open
e fetch
e select

e whenever

See the entry in Chapter 5 for predicate.

SQL Statements and Commands 6-69

Whenever

Whenever

Function The whenever statement tests the SQLCODE value returned
with each execution of an SQL statement. If the listed condition
occurs, the whenever statement performs the goto statement.

A whenever statement must precede any statements that might
result in an error. This way, InterBase knows what action to take
in case of error.

Syntax whenever {not found|sqglerror|sqglwarning}
goto-statement

Options not found
Indicates the end of the input stream. This condition corre-
sponds to the SQLCODE value of 100. This option is useful
when you are looping through the active set of a cursor.

sqglerror
Indicates that the statement did not complete. This condition
corresponds to a negative SQLCODE.

sglwarning
Indicates a general system warning or informational message.
This condition corresponds to SQLCODE values between 1 and
99, inclusive.

goto-statement

Example The following example demonstrates the sqlerror option of the
whenever statement:

database db = filename "bar.gdb";
exec sgl begin declare section;
exec sgl end declare section;
main ()
{
exec sl whenever sglwarning
go to warn;
exec sgl whenever sqglerror
go to error;
exec sgl whenever not found
go to no_data;

6-70 SQL Statements and Commands

Troubleshooting

See Also

Whenever

exec sqgl
insert into rivers (river, source, length,
out flow)

select "Assabet", state, 35, "Charles"
from cities ¢ where c.city = "Maynard";
exec sqgl
commit release;
exit ();
no_data:

printf ("No record matched selection
criteria\n");

exec sqgl
rollback release;
exit ();
warn:
error:
printf ("Encountered SQLCODE %d\n", SQLCODE) ;
printf (" expanded error message -\n");
gds_Sprint_status (gds_S$status);
exec sqgl

rollback release;

}
The following values may be returned to SQLCODE.

* SQLCODE < 0 indicates that the statement did not complete.
* SQLCODE = 0 indicates success.

* SQLCODE >0 and < 100 indicates an informational message
or warning.

* SQLCODE = 100 indicates the end of the input stream.

See the discussion of errors and error handling in the Appendix.

SQL Statements and Commands 6-71

Appendix
Reporting and Handling Errors

This appendix discusses error reproting and handling in GDML and SQL programs. It
also lists InterBase’s major error codes and SQL error codes.

Overview

InterBase returns GDML error messages through the status vector, and returns SQL
error messages through the SQLCODE. The following sections discuss error handling
and list the error messages associated with GDML and SQL.

A-1

Reporting Errors to Program

Reporting Errors to Programs

When you use gpre to preprocess programs, you may receive parsing errors. These are
errors that gpre encounters when parsing a command, such as an unrecognized word,
invalid syntax, and so on. The messages are generally

self-explanatory.

When you run a program, InterBase returns the following types of errors:

* A database error. Database errors can be any one of many problems, such as con-
version errors, arithmetic exceptions, and validation errors. If you encounter one
of these messages, check any secondary messages.

* A bugcheck or internal error. Bugchecks reflect a problem that you should report.
If you encounter a bugcheck, save the output and send it to InterBase at the follow-
ing address for analysis:

Borland International Inc.
InterBase Customer Support
P. O. Box 660001

1800 Green Hills Road
Scotts Valley, CA 85067

The InterBase access method returns error messages through the status vector, a list
of twenty 32-bit integers. When InterBase writes to the status vector, it uses the first
longword to pass the count (up to 19) of returned messages. Messages are divided into
two classes:

* Major codes comprise a limited set of error codes that InterBase returns to the sec-
ond longword slot of the status vector.

For the sake of transportability to other DSRI-compatible systems, your program
should test only for the major codes.

® Minor codes provide additional information about the problems identified by the
major codes.

Figure A-1 represents a conceptual view of the status vector and what it might include:
Figure A-1. Status Vector

01 [count] 5

02 [major] bad_db_format

03 string pointer with name of database
04 [minor] object not a database

05 [minor] object not a file

The first longword returned by InterBase is the number of status vector slots. The sec-
ond longword is the major code that describes the failure in its most general terms.
Subsequent longwords provide additional information about the failure.

A-2

Reporting Errors to Program

The GDML library includes a routine that lets you conveniently display the contents
of the status vector in conjunction with the on_error clause you can use with all
GDML statements. The format of this routine follows:

Syntax

gds_S$print_status

(gds_Sstatus)

Gpre declares gds_$status, so you do not have to define it in your program.

Major Codes

Major Codes

This section lists the major code messages for the major codes. It contains a complete
set of gds status codes. Many of the gds status codes occur in programs that use only
SQL statements. Errors that do not occur in a purely SQL program are marked with a

dagger ().

Error

Message

Explanation

Action

Error
Message
Explanation

Action

Error
Message

Explanation

Action

A-4

gds Sarith_except

arithmetic exception, numeric overflow, or string
truncation

There was an error during the computation or data conversion of
a numeric data item. For example, you changed the datatype of a
field from short to long, but did not preprocess and compile the
program again. As a result, you received an overflow error, or
there may have been an overflow during the calculation of a com-
puted field.

Check for conflicts that could cause conversion errors or for string
truncation. If necessary, preprocess and compile the program
again.

gds_Sbad_db_format

file <filename> is not a valid database

You tried to open a file that is not a database.

Check the file name of the database you want to access, correct
any errors, and try again.

gds_$bad_db_handle t

invalid database handle (missing READY?)

If you are using a variable as an explicit database handle, you did
not set the handle to zero or NIL before attaching the database,
you modified the variable after its value was set by InterBase, or,
if you used the manual option on gpre, you did not ready the
database before using it.

Set the database handle to zero or NIL before attaching the
database, make sure that your program is not writing to this
variable, or ready the database before using it.

Error
Message

Explanation

Action

Error
Message

Explanation

Action

Error
Message

Explanation

Action

Error
Message

Explanation

Action

Error
Message

Explanation

Major Codes

gds_$bad_dbkeyt
invalid database key

You have probably modified the variable holding the database
key (dbkey) value or used an uninitialized variable.

Check and correct your program logic.

gds_$bad dpb contentf
bad parameters on attach or create database

One or more of the items in the database parameter block (DPB)
does not belong there. For example, a value may be out of range,
or there may be conflicting items.

Check and correct the parameters.

gds_$bad_dpb_formt
unrecognized database parameter block

One or more of the parameters in the database parameter block
(dpb) is undefined.

Check and correct the parameters.

gds_g$bad_req handlet
invalid request handle

You did not set the request handle to zero or NIL before compiling
the request, you modified the variable after its value was set by
InterBase, or, if you are using the call interface, you tried to start
a request before you compiled it.

Set the handle to zero or NIL before compiling the request, make
sure that your program does not write to this variable, or compile
the request before starting it.

gds $bad_segstr_ handlef

invalid blob handle

You did not set the blob handle to zero or NIL before opening the
blob field, you modified the blob variable after it was set by Inter-

A-5

Major Codes

Action

Error
Message
Explanation

Action

Error
Message

Explanation

Action

Error
Message
Explanation

Action

Error

Message

Explanation

A-6

Base, or, if you are using the call interface, you tried to read or
write the blob before opening it.

Set the handle to zero or NIL before opening the blob field. Make
sure that your program does not write to this variable, open the
blob for read (gds_$open_blob), or write (gds_$create_blob)
before accessing it.

gds_$bad _segstr_ idf

invalid blob identifier

You referenced an invalid identifier for a blob field.

Make sure that you correctly copied the blob id from the source
relation and try again.

gds_$bad_tpb contentt

invalid parameter in transaction parameter block

One or more of the parameters in the transaction parameter
block (TPB) is out of range, or tpb items conflict.

Check and correct the tpb parameters.

gds_sSbad_tpb formf

invalid format for transaction parameter block
The format of the transaction parameter block (tpb) is incorrect.
Be sure you are using the correct tpb version and the qualifiers
are grouped correctly.

gds_$bad_trans_handlet

invalid transaction handle (missing START_TRANSAC-
TION?)

You did not set the transaction handle to zero or NIL before start-
ing the transaction, you modified the variable after it was set by
InterBase, or if you used the manual option on gpre, you did not
start the transaction before reading or writing a record.

Action

Error
Message
Explanation

Action

Error
Message

Explanation

Action

Error
Message
Explanation

Action

Error
Message

Explanation

Action

Major Codes

Set the handle to zero or NIL, make sure that your program is not
writing to this variable, or start the transaction before you per-

form any data manipulation operations.

gds_sbug check

internal gds software consistency check (<value>)

An internal system failure occurred.

Please report this error to Interbase Software Customer Support
at 800-437-7367 or you can fax a copy of your program to 617-
271-0221.

gds_Sconvert_error

conversion error from string "<string>"

Your program attempted an illegal or unsupported data
conversion. For example, you may have tried to convert an
alphabetic string to a floating point number or a blob to any other
datatype.

Check your program for illegal or unsupported data conversions.
If the problem is caused by bad data entry, provide some mecha-
nism to handle invalid input.

gds_$db corrupt

database file appears corrupt (<filename>)

Data structures in the database have been corrupted.

Read the discussion of gfix in the Database Operations guide and
follow directions for dealing with a corrupted database.
gds_sdeadlock

deadlock

Your program cannot continue because it has encountered a
deadlock with another process.

Roll back your transaction and start a new one.

Major Codes

Error

Explanation

Action

Error

Message

Explanation

Action

Error
Message

Explanation

Action

Error
Message
Explanation

Action

A-8

gds_Sexcess_transt

Your program, while running with a foreign DBMS, attempted to
start a second concurrent transaction and the foreign DBMS
allows only one transaction per process.

Do not use more than one transaction per process with Rdb/VMS.

gds_Sfatal conflict

unrecoverable conflict with limbo transaction
<transaction id>

Your transaction attempted to update a record whose most recent
copy was created by a transaction in limbo. Until that transac-
tion has completed, you cannot change the record.

Use the gfix-two-phase-list command to print the current state
of the transactions and their partners. This command does an
automatic commit or rollback.

gds $from no_matchy

no match for first value expression

You used a request language blr_from value expression or a
GDML first-value-expression for which there were no matches in
the database.

In the request language, use a blr_via value expression instead
of blr_from. Blr_via lets you supply a default value in case
there is not a match for the primary value expression. If you are
using GDML you should test for this condition.

gds $imp exc
Implementation limit exceeded

Your request exceeded some defined internal limit.

Simplify the request. Please report this error to Interbase
Software Customer Support at 800-437-7367. You can send a
copy of the original request to Interbase for analysis at:

Borland International
InterBase Customer Support

Error

Message

Explanation

Action

Error

Message

Explanation

Action

Error
Message
Explanation

Action

Error
Message

Explanation

Major Codes

1800 Green Hills Road
P. O. Box 660001
Scotts Valley, CA 95067-0001 USA

You can also fax a copy of your original request to 408-439-7808.

gds_$infinapt

information type inappropriate for object
specified

A call to gds information routines referenced an item that does
not exist. For example, you asked for the total length of a blob in
a call to gds_$database_info.

Check and correct the information items.

gds $infonaft

no information of this type available for object
specified

A call to a gds information routine requested information that is
not currently available for that object.

Check and correct the parameters. This error is sometimes
appropriate depending on the status of the object at the time of
the call. For example, an inactive request does not have a current
message.

gds_$infunk t

unknown information item

A call to a gds information routine referenced an undefined item.

Check and correct the information items.

gds Sinvalid blr
invalid request blr at offset <integer>

InterBase found an error in the binary language representation
(blr) of a request at the position indicated by the offset.

A-9

Major Codes

Action

Error

Message

Explanation

Action

Error
Message

Explanation

Action

Error
Message

Explanation

Action

A-10

The offset returned in the message is the number of the offending
byte in the blr string. Check and correct the syntax of the request
language statement containing the unrecognized byte.

Note

Report this error to Interbase Software if you encounter
it in an SQL program or a preprocessed GDML program.

gds_$io_error

I/0 error during "<operation>" operation for file
"<filename>"

Your program encountered an input or output error.

Check secondary messages for more information. The problem
may be an obvious one, such as incorrect file name or a file pro-
tection problem. If that does not eliminate the problem, check
your program logic. To avoid errors when the user enters a data-
base name interactively, add an error handler to the statement
that causes this message to appear.

gds_$lock_conflict

lock conflict on no wait transaction

A start_transaction statement specified the nowait option,
and a resource needed by the program was not available.

The nowait option is generally not recommended. If your pro-
gram requires it, include an error handler to trap for this error,
and then wait and retry the statement. Your program may have
to loop while waiting for resources.

gds_Smetadata_corrupt

corrupt system relation

The system relations for the named database have been cor-
rupted.

Check any secondary messages. Correct the problem. If the sys-
tem relations were not corrupted by something you did, copy the
broken database and send the copy to the following address for
analysis:

Error
Message

Explanation

Action

Error

Message

Explanation

Action

Error

Message

Explanation

Action

Error
Message

Explanation

Major Codes

Borland International

InterBase Customer Support

1800 Green Hills Road

P. O. Box 660001

Scotts Valley, CA 95067-0001 USA

gds_Sno_cur_rec

no current record for fetch operation

Your program executed a fetch before opening the associated
stream or cursor, or after reaching the end of stream. This error
does not occur through the call interface.

Open a stream before fetching records from it. Do not fetch
records after the stream has been exhausted. You may want to
include an error handler to trap for the end of stream.

gds_sno_dup

attempt to store a duplicate value in a unique
index

A store or modify violated the uniqueness of the index.

Provide a non-duplicate value for the indexed field. If the
problem is at the data entry level, you may want to add an rror
handler to trap for this error and re-prompt for another value.

gds_$no_finisht

program attempted to exit without finishing
database

Your program exited without detaching the database.

Explicitly end database access with a GDML finish statement or
a call to gds_$detach_database.

gds_Sno_priv

no permission for <access-type> access to <entity>

Your program attempted an operation on an object for which you
do not have the appropriate access rights.

Major Codes

Action

Error
Message

Explanation

Action

Error
Message
Explanation

Action

Error
Message

Explanation

Action

Error

Message

A-12

Check the access control list (ACL) for the object you referenced.
You may have inadvertently locked yourself out. However, if you
do not own the database you are accessing, someone else may
have prevented you from accessing that object. If you think that
you should have access to that object, contact the person who cre-
ated the ACL for that object.

For more information about securety schemes, see the chapter on
securing data and metadata in the Data Definition Guide.
gds_$no_recont

transaction is not in limbo

Your attempt to reconnect a transaction to a database failed
because the specified transaction is not in limbo.

Check that the transaction identifier is incorrect. If it is, correct
it and try again.

gds $no_recordf

invalid database key

Your program referenced an invalid database key (dbkey).

You used a blr_dbkey value expression in your program which
references a non-record. You may have erased the record and
then tried to access it by its dbkey, or you may have altered the
dbkey. Correct your program.

gds $no segstr closet

blob was not closed

Your storage of a blob field did not terminate by closing the blob
field.

Terminate the blob storage with a call to gds_$close_blob or
GDML’s close_blob statement so that InterBase can complete
the field.

gds_S$not_valid

validation error for field <field-name>, value
"<string>"

Explanation

Action

Error
Message

Explanation

Action

Error
Message

Explanation

Action

Error

Message

Explanation

Action

Error
Explanation

Action

Major Codes

A validation check failed on a store or modify.

If the value you tried to write seems valid, you may want to
update the validation clause for that field. Otherwise, include an
error handler to re-prompt if the validation check fails.
gds_Sobsolete_metadataf

metadata is obsolete

Your program probably referenced an object that does not exist
in the database.

Check object names or identifiers to make sure that they still
exist in the database. Correct your program if they don’t.
gds S$open_transt

a transaction has not been terminated

Your program attempted to detach a database without commit-
ting or rolling back one or more transactions.

Commit or roll back those transactions before you detach the
database.
gds_Ssport_len

message length error (encountered <integer>,
expected <integer>)

The actual length of a buffer does not correspond to what the
request language says it should be.

Make sure that the bir_string_length parameter on the call to
gds_$compile_request matches the BLR string. If you receive
this error while using GDML or SQL, please submit a bug report.
gds_ Srandom

An unexpected error occurred.

Check secondary messages.

A-13

Major Codes

Error
Message

Explanation

Action

Error
Message

Explanation

Action

Error
Message
Explanation

Action

Error
Message

Explanation

Action

Error
Message

Explanation

A-14

gds_Sread_only field
attempted update of read-only field

Your program tried to change the value of a read-only field in a
system relation, a computed field, or a field used in a view.

If the read-only field is in a system relation, change your pro-
gram. If the field is a computed field, you have to change the
source fields to change its value. If the field takes part in a view,
update it in its source relations.

gds_S8read only rel

attempted update of read-only relation

Your program tried to update a relation that it earlier reserved
for read access.

If you want to write to the relation, reserve it for write.

gds_$read_only_transt
attempted update during read-only transaction
Your program tried to update during a read-only translation.

If you want to update the database, use a read-write transaction.

gds_Sreq no_trans
no transaction for request

Your program tried to continue a request after the enveloping
transaction had been committed or rolled back.

Check and correct your program logic. Commit or roll back the
transaction only after you have completed all operations that you
want in the transaction. In SQL programs, you must re-open cur-
sors after you commit a transaction.

gds_Sread _only view

can’t update read only view <view-name>

Your program tried to update a view that contains a record select,
join, or project operation.

Action

Error
Message

Explanation

Action

Error
Message

Explanation

Action
Error

Message

Explanation

Action

Error

Message

Major Codes

Views that include a record select, join, or project cannot be
updated. If you want to perform updates, you must do so through
the source relations. If you are updating join terms, make sure
that you change them in all relations. In any case, update the
source relations in a single transaction so that you make the
changes consistently.

gds_Sreq sync

request synchronization error

Your program issued a send or receive for a message type that did
not match the logic of the BLR request.

For call interface programs, locate and correct the program error.
If you received this error while using GDML or SQL. Please sub-
mit a bug report.

gds S$req wrong db

request referenced an unavailable database

Your program referenced a relation from a database that is not
available within the current transaction.

Change your program so that the required database is within the
scope of the transaction.

gds_$segmentt

segment buffer length shorter than expected

The length of the segment_buffer on a blob call was shorter than
the segment returned by InterBase. Therefore, InterBase could
return only part of the segment.

Check the segment_buffer_length parameter on the blob calls
and make sure that it is long enough for handling the segments
of the blob field you are accessing. Alternately, you could trap for
this error and accept truncated values.

gds_g$segstr_eoff

attempted retrieval of more segments than exist

A-15

Major Codes

Explanation

Action

Error
Message

Explanation

Action

Error
Message
Explanation

Action

Error
Message

Explanation

Action

Error
Message

Explanation

A-16

Your program tried to retrieve more segments from a blob field
than were stored.

Change your program so that it tests for this condition and stops
retrieving segments when there aren’t any more.
gds_$segstr_no_op

attempted invalid operation on a blob

Your program tried to do something that cannot be done with
blob fields.

Check your program to make sure that it does not reference a
blob field in a Boolean expression or in a statement not intended
for use with blobs. Both GDML and the call interface have state-
ments or routines that perform blob storage, retrieval, and
update.

gds_$segstr_no_readst

attempted read of a new, open blob

Your program tried to read from a blob field that it is creating.
Check and correct your program logic. Close the blob field before
you try to read from it.

gds_g$segstr_no_transt

attempted action on blob outside of a transaction

Your program referenced a blob field after it committed or rolled
back the transaction that had been processing the field.

Change your program so that you perform whatever data manip-
ulation is required in a transaction before you end that transac-
tion.

gds_$segstr_no_write

attempted write to read-only blob

Your program tried to write to a blob field that had been opened
for read access.

Action

Error
Message

Explanation

Action

Error
Message
Explanation

Action

Error
Message

Explanation

Action

Error

Message

Explanation

Action

Major Codes

If you are using the call interface, open the blob by calling
gds_$create_blob. If you are using GDML, open the blob with
the create_blob statement.

gds_$segstr wrong db
attempted reference to blob in unavailable database

Your program referenced a blob field from a relation in a data-
base that is not available to the current transaction.

Change your program so that the required database is available
to the current transaction.

gds_$sys_request

operating system directive failed

The operating system returned an error.

Check secondary messages for more information. When you iso-
late the problem, you may want to include an error handler to
trap for this condition.

gds_Sunavailable

unavailable database

Your program referenced a database that InterBase cannot
access.

Before you copy a database to another system, make sure that a
version of InterBase or a compatible access method is available
on that system.

gds_Sunres_relt

relation <relation-name> was omitted from the
transaction reserving list

Your program tried to access a relation that was not in the lock
list for that transaction.

Change your program so that all required relations are in the
reserved list when you start a transaction with the reserving
option.

A-17

Major Codes

Error

Message

Explanation

Action

Error
Message

Explanation

Action

Error

Message

Explanation

Action

A-18

gds_Suns_ext

request includes an extension not supported in this
implementation

Your program tried to do something that cannot be done with this
version of InterBase.

Avoid using that feature.

gds_swish list
feature is not supported

You tried to do something that is not possible in this release of
InterBase.

Avoid using that feature.

gds_Swrong_ods

unsupported on disk structure for file <filename>;
found <structure-id>, support <structure-id>

The on-disk structure of the database you referenced does not
match the structure expected by the version of InterBase that
you are using.

Check any secondary messages for both the actual and expected
versions of the on-disk structure. The database may have been
created using a field test version of InterBase that used a differ-
ent on-disk structure than the production version. Use the old
version of gbak to back up the database and then restore it using
the current version of gbak.

Minor Codes

Minor Codes

The minor codes supply additional information about the generic error indicated by the
major codes. When the InterBase access method returns an error, read the explanation
for the major code, do whatever is recommended as a user action, and then try again.

If the recommended action is to check secondary messages, read the text returned with
the secondary message and correct the problem.

A-19

Preserving SQL Program Portability

Preserving SQL Program Portability

If you intend to move your SQL programs between InterBase and other database man-
agement systems, in your error handling routines you should limit yourself to using the
whenever statement and to checking the value of SQLCODE. The whenever state-

ment lets you perform an action depending on SQLCODE'’s value.

For error handling in applications that you plan to use on InterBase or other DSRI
database management systems, you can check both the SQLCODE message and the
actual message returned by InterBase. There is a large overlap of SQLCODE errors,
such that the code -901 signals any one of more than a dozen InterBase database
errors.

A-20

SQLCODE Correspondence

SQLCODE Correspondence

The following list of SQLCODE errors equates the general SQL error with the
InterBase error symbol discussed earlier in this appendix and provides a brief expla-
nation. Errors that should not occur in a purely SQL program are marked with a dag-

ger (7).

SQLCODE | GDS Error Symbol Brief Error Message

-1 no corresponding msg a singleton select returned too many
records

-150 read_only_rel read only relation

-151 read_only_field read only field

-151 read_only_view can’t update read only view <view-name>

-413 convert_error conversion error from string "<string>"

-501 bad_req_handle invalid request handle

-508 no_cur_rec no current record

-551 no_priv no permission for <access-type> access to
<entity>

-607 no_meta_update no metadata update

-625 not_valid validation error for field <field-name>,
value "<string>"

-802 arith_except arithmetic exception, numeric overflow, or
string truncation

-803 no_dup attempt to store a duplicate value in a
unique index

-804 wronumarg wrong number of arguments on call

-817 read_only_trans attempted update during read-only trans-
action

-901 bad_dpb_contentt bad parameters on attach or create data-
base

-901 bad_dpb_formT unrecognized database parameter block

A-21

SQLCODE Correspondence

SQLCODE | GDS Error Symbol Brief Error Message

-901 bad_dbkeyt bad database key

-901 bad_segstr_handlet invalid blob handle

-901 bad_segstr_id¥ bad segmented string id

-901 bad_tpb_content¥ bad tpb content

-901 bad_tpb_formT bad tpb format

-901 bad_trans_handlef invalid transaction handle (missing
START TRANSACTION?)

-901 excess_trans too many transactions (Rdb access only)

-901 fatal_conflict unrecoverable conflict with limbo transac-
tion <transaction-id>

-901 from_no_matcht no matches in the database

-901 imp_exc Implementation limit exceeded

-901 infinapt information type inappropriate for object
specified

-901 infonat no information of this type available for
object specified

-901 infunkt information item unknown

-901 invalid_blr invalid request blr at offset <integer>

-901 lock_conflict lock conflict

-901 no_finisht program exited without finish

-901 no_reconft reconnect failed

-901 no_recordf invalid database key

-901 no_segstr_closet blob field not closed

-901 open_transy attempt to detach without ending transac-
tion

-901 port_len message length error (encountered <inte-

ger>, expected <integer>)

A-22

SQLCODE Correspondence

SQLCODE | GDS Error Symbol Brief Error Message

-901 req_no_trans attempt to continue request after transac-
tion ended

-901 req_wrong_db wrong database referenced in request

-901 random unexpected error

-901 req_sync request synchronization error

-901 segment segment buffer was too short

-901 segstr_eof?} attempt to retrieve more segments than
were there

-901 segstr_no_op attempt to do something with a blob that
you can’t do

-901 segstr_no_readt attempt to read from a blob being created

-901 segstr_no_transt attempt to reference a blob after transac-
tion ended

-901 segstr_no_write} attempt to write a blob field opened for
read

-901 segstr_wrong_dbt wrong database for referenced blob

-901 unres_relf relation <relation-name> was omitted
from the transaction reserving list

-901 uns_ext request includes an extension not sup-
ported in this implementation

-901 wish_list feature is not supported

-902 bug_check internal gds software consistency check
(<string>)

-902 db_corrupt database file appears corrupt (<string>)

-902 io_error I/O error during "<operation>" operation
for file "<filename>"

-902 metadata_corrupt metadata is corrupt

-902 obsolete_metadata metadata is obsolete

A-23

SQLCODE Correspondence

SQLCODE | GDS Error Symbol Brief Error Message

-902 sys_request operating system directive failed

-902 wrong_ods unsupported on disk structure for file
<filename>; found <structure-id>, support
<structure-id>

-904 bad_db_handle¥} invalid database handle (missing
READY?)

-904 unavailable unavailable

-912 deadlock deadlock

-922 bad_db_format file <filename> is not a valid database

A-24

Dynamic SQL Error Codes

Dynamic SQL Error Codes

The following list of SQLCODESs can occur with the dynamic SQL statements discussed

in the SQL section of the Programmer’s Guide:

SQLCODE Brief Error Message

100 No more records

103 Constant datatype unknown
104 Parsing error

204 Relation unknown

206 Field name unresolvable
303 Conversion error

504 Could not find cursor

510 Cursor not updatable

518 Could not find request

804 Counts of field and values don’t match (INSERT)
804 Datatype not recognized

804 SQLDA does not exists

804 Wrong number of variables

As with many SQLCODES, the codes for dynamic SQL can mean any of several things.
The Troubleshooting sections for the dynamic SQL entries in the SQL section of the

Programmer’s Reference list which errors can occur.

A-25

A

alter table
SQL 6-2
and
order in compound boolean 3-2
any
compared with joining 3-3
GDML 3-3
Arithmetic expression
GDML 3-18

B

based_on 4-3

between
GDML 3-3
SQL 5-3

Blob 4-46
closing 4-9
create_blob 4-15
creating 4-15
get_segment 4-57
opening 4-67
put_segment 4-74
reading 4-57
release internal storage 4-4
storage 4-103
writing to 4-74

Boolean expression
conditions 3-2
GDML 3-2

C

cancel_blob 4-4
case_menu 4-6
close 6-4
close_blob 4-9
commit

GDML 4-11

SQL 6-6
compare

SQL 5-2
comparison

GDML 34
Constant expression
SQL 5-9
containing
GDML 3-5
quoted string search in blob 3-5
create database
SQL 6-10
create index
SQL 6-12
create table
SQL 6-14
create view
SQL 6-17
create_blob 4-15
cross
GDML 3-13
Cursor
activating in SQL 6-54
declaring 6-19

D

Database
closing 4-39
creating 6-10
declaring 4-18
dropping 6-33
file specifications 4-19, 4-78
opening 4-77
options 4-18
pathname 4-19
remote 4-78
runtime 4-18
database 4-18
Database field expression
GDML 3-19
declare cursor 6-19
declare statement 6-23
declare table 6-24

delete

SQL 6-28
describe 6-31
display

Index- 1

GDML 4-23 execute immediate

drop database SQL 6-39
SQL 6-33 exists
drop index see also any
SQL 6-34 SQL 5-6
drop table
SQL 6-35 F
drop view 6-36 fetch
DSQL GDML 4-36
alter table 6-2 SQL 6-41
close 6-4 Field
commit. 6-6 retreiving blob data from 4-46
create index 6-12 selecting with SQL 5-13
create table 6-14 updating 4-59, 6-67
create view 6-17 field expressions 5-8
declare statement 6-23 finish
describe 6-31 GDML 4-39
drop index first
SQL 6-34 GDML 3-12
drop table 6-35 for
drop view 6-36 GDML 4-41
error codes A-25 for blob 4-46
execute 6-37 for_form 4-49
execute immediate 6-39 for_item 4-52
fetch 6-41 for_menu 4-54
grant 6-46 Forms
open 6-54 displaying 4-23
prepare 6-57
revoke 6-59 G
rollback 6-61
Dynamic menus 4-54 GDML
any 3-3
arithmetic expression 3-18
E based_on 4-3
erase 4-27 between 3-3
Errors boolean syntax 3-2
DSQL code list A-25 cancel_blob 4-4
on_error 4-61 case_menu 4-6
reporting to program A-2 clause list 4-1
SQL codes list A-4 close_blob 4-9
event_init 4-29 commands list 4-1
event_wait 4-33 commit 4-11,4-18
execute comparison 3-4
SQL 6-37 containing 3-5

Index-2

create_blob 4-15
cross 3-13

database field expression 3-19
declarations list 4-1
display 4-23

erase 4-27

event_wait 4-33

fetch 4-36

finish 4-39

first 3-12

for 4-41

for blob 4-46
for_form 4-49
for_item 4-52
for_menu 4-54
get_segment 4-57
matching 3-6
matching using 3-7
missing 3-8

modify 4-59

not 3-9

numeric literal expression 3-20
on_error 4-61
open_blob 4-67
prepare 4-69
put_item 4-71
put_segment 4-74
quoted string expression 3-20
ready 4-77

record selection expression 3-11
reduced to 3-15
relation clause 3-12
release_requests 4-81
rollback 4-88

save 4-90

sorted by 3-16
start_stream 4-92
start_transaction 4-95
starting with 3-9
statements list 4-1
store 4-99

store blob 4-103
transaction handle 4-105

unique 3-10
username expression 3-21
value expressions 3-18
with 3-15
gds
status codes list A-4
gds_$print_status A-3
get_segment 4-57
gpre
manual option 4-77
reserved words 2-3
symbols 2-2
grant 6-46
group by 5-18

H

having 5-19
Host language variables
SQL 5-10

I
in
SQL 5-5
Index
creating 6-12
dropping 6-34
insert
SQL 6-49

Joining relations 3-13

L
like
SQL 5-4

M
Major codes in gds A-2, A-4
matching
GDML 3-6
matching using
GDML 3-7

Index- 3

Minor codes in gds A-2, A-19
missing
GDML 3-8
Missing values
GDML 3-8
modify 4-59

N
not

GDML 3-9

order in compound boolean 3-2
Numeric literal expression

GDML 3-20

0]

on_error 4-61
open
SQL 6-54
open_blob
GDML 4-67
or
order in compound boolean 3-2

P

Predicate expressions in SQL 5-2
prepare
GDML 4-69
SQL 6-57
put_item
GDML 4-71
put_segment 4-74

Q

Quoted string
GDML 3-20

R

ready
GDML 4-77

Record
deleting in GDML 4-27
removing from stream 4-27

Index-4

selecting in SQL 6-63
storing in GDML 4-99
storing in SQL 6-49
Record selection expression
GDML 3-11
Record stream
creating 4-92
reduced to
GDML 3-15
Relation clause in GDML 3-12
release_requests 4-81
Reserved words list 2-3
revoke 6-59
rollback
GDML 4-88
SQL 6-61

S

save 4-90
Scalar expressions 5-7
Security
granting privileges 6-46
revoking privileges 6-59
select
SQL 5-13, 6-63
sorted by
GDML 3-16
SQL
alter table 6-2
between 5-3
close 6-4
commit 6-6
compare 5-2
constant expression 5-9
create index 6-12
create table 6-14
create view 6-17
cursor closing 6-61
cursor declaration 6-19
cursor opening 6-54
database dropping 6-33
delete 6-28
drop view 6-36

execute 6-37

exists 5-6

fetch 6-41

field expressions 5-8

grant 6-46

group by 5-18

having 5-19

host variables 5-10

in 5-5

insert 6-49

like 5-4

privilege revoking 6-59

program portability A-20

scalar expressions 5-7

select expression 5-13

selecting data 6-63

statements list 6-1

statistical functions 5-11

storing data, see insert

update 6-67

whenever 6-70, A-20
SQLCODE

correspondence with InterBase A-21

errors A-21
SQLDA

retrieving contents 6-31

see also describe
start_stream 4-92
start_transaction 4-95
starting with

GDML 3-9
Statistical functions

SQL 5-11
Status vector

error reporting A-1
store

defining in programs 4-99
store blob in GDML 4-103
Storing data

GDML 4-99

T
Table

creating 6-14

declaring 6-24

dropping in SQL 6-35
Transaction

committing 4-11

concurrency model 4-95

consistency model 4-96

default 4-95

ending 4-11

handle 4-105

no_wait option 4-96

options 4-95

reserving 4-96

rolling back in GDML 4-88

rolling back in SQL 6-61

saving 4-90

starting/stopping 4-95

U
unique

GDML 3-10
update

SQL 6-67
Username expression

GDML 3-21

V
Value expressions in GDML 3-18
View
defining in SQL 6-17
dropping in SQL 6-36

W

whenever 6-70
with
GDML 3-15

Index- 5

